
RL-TR-95-12
Final Technical Report
February 1995

KBSA CONFIGURATION
MANAGER

Software Options, Inc.

Michael Karr

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19950418 054
DTI<

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

(TIC QTJALT^ T^c-.,—

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-12 has been reviewed and is approved for publication.

APPROVED:

DOUGLAS A. WHITE
Project Engineer

FOR THE COMMANDER:

HENRY J. BUSH
Acting Deputy Director
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

CCM Final Report

Contents

1 Background

2 Summary of Accomplishments

3 Lessons Learned

4 Next Steps

5 Bibliography

Appendix A KBSA Configuration Manager Design

Appendix B Beyond the Read-Eval Loop: The Artifacts System

Appendix C The Activity Coordination System

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

By ,
Distribution /

Availability Codes

Dist

m
Avail and/or

Special

1

2

3

5

5

A-l

B-l

C-l

i/ii

CCM Final Report

1 Background

In this project, we designed and prototyped a change and configuration management (CCM)
facility for use in the KBSA. This facility was based on the coupling of three independently
developed technologies: the Plexes System, the Artifacts System, and the Activity Coordina-

tion System.

• The Plexes System is the overall repository for network-wide data; its main role is to

provide active views on the data.

• The Artifacts System is the repository of both design objects and derived information;
it provides versioning, browsing, updating, and tool integration.

• The Activity Coordination System provides the communication and persistent execu-
tion services on which multi-user cooperation is based.

Each of these has a concise formal basis, developed specifically for its domain of application.
The elegance and simplicity of the bases lead naturally to the characteristics of openness
and extensibility, properties that we exploited in the course of this work, as we will discuss

in more detail below.
In conjunction with TRW, we illustrated the applicability of these technologies by con-

structing a small but representative set of scenarios based on users (both human and auto-
mated) and the roles they play in software development processes that require management
of change and configurations. The scenarios served as the basis for evaluating functional
and scaling properties of technology. This evaluation, based on the use of our prototype
implementations of the above systems, had two primary goals: to assess the applicability of
the CCM to large-scale software development efforts and to plan the implementation of the
CCM facility on other candidate KBSA frameworks for large-scale software.

The results of the project are largely reflected in three of its products: the system itself,
a comprehensive paper, and a videotape of its demonstration. Each of these happens to
address a slightly different audience for the technology. The software, and its associated
users' manual, is available for anyone who wants to use the technology. It is available
on half-inch magnetic tape, by request, and can be made available on the Internet, also
by request. The paper describes both the theoretical underpinnings of the system and its
current implementation. It is written as a submission to a technical journal. The videotape
is the TRW report. This may appear to be an unorthodox format, departing as it does
from the usual paper report, but it is quite appropriate in this context: it is not possible to
convey adequately the dynamic nature of the Activity Coordination System in a static paper
medium, even one with pictures. The demonstration provides a non-technical description
of the system. We are including, as appendices, copies of the overall design for the CCM
facility, a paper describing the Artifacts System, and the technical paper describing the
Activity Coordination System. Section 5 contains a complete list of the documents produced
by this project. We have not included copies of all of them with this report to avoid any
unnecessary reproduction or mailing costs, but we are, of course, happy to provide copies to

anyone on request.

CCM Final Report

2 Summary of Accomplishments

In order to offer superior change and configuration management for the evolution of the
considerable amount of KBSA software written in Common Lisp, we extended the Arti-
facts System to support Common Lisp. This involved the addition of the artifact types
clisp-source (to hold fragments of source), clisp-module (corresponding to compilation
units), and clisp-program (to specify an overall executable), as well as the derivative classes
clisp-text (corresponding to the type clisp-source), clisp-f ile (input to the compiler),
and clisp-spec (interface specification). It also involved setting up a "Lisp Worker", the
apparatus which allows one to write a deriver in Common Lisp. In spite of apparent major
differences between Common Lisp and C, Common Lisp artifacts as developed under this
contract and C artifacts developed previously share both a common user view and a con-
siderable amount of implementation. Indeed, part of the work on the contract went into
generalizing the underlying machinery to maximize commonality of the implementation.
This same machinery is now being used at Harvard University to support a new language

for parallel machines.
Part of the work on this contract involved developing a new graphical editor for activity

descriptions. This editor has the property of being programmable using a combination of
EMACS Lisp and PostScript. It uses an off-board process to interface to X; this process
transmits events back to the parent EMACS process. It uses a different off-board process
to execute the PostScript; this process communicates low-level graphics commands directly
to the X server. Although such an arrangement sounds as if it might be slow, in fact the
performance is more than adequate. The ease of extending this editor more than repaid
the investment; without it, we would not have had a system that was usable by TRW at a
sufficiently early stage in the contract.

We made several significant enhancements to the semantics of the Activity Coordination
System. One of these was the implementation of condensation nodes, somewhat analogous to
function calls in a procedural programming language, complete with parameterization. The
idea is that a user can place a condensation node in one activity description, name another
activity description in the condensation node, supply actual parameters, and specify how the
"dangling arcs" of the named activity description attach to nodes in the activity description
where the condensation node occurs. Further, when viewing a running activity description,
the user may ask to view the "subinstantiation" corresponding to the condensation node or
may ask to view the instantiation of which a current view is a subinstantiation, thus navigat-
ing around the instantiation as a whole. (Needless to say, the programmable graphics editor
was a key element in being able to provide this functionality within the given resources.)

Another enhancement was the implementation of multisite activities. A user may indicate
that a subgraph of an activity description is to be instantiated at a particular site (given by
a constant or a parameter), rather than at the site where the rest of the instantiation occurs.
This property of specifying sites provides a truly wide-area functionality for the system: at
a demonstration given at Rome Lab, part of an activity description was instantiated locally
and part of it on machines at Harvard University (any other Internet site would have worked

as well).
One of the improvements we made to the system was that of greatly simplifying the

CCM Final Report

process of implementing a new primitive activity description (i.e., one that is implemented in
C rather than specified graphically). We thus were able to make necessary additions of
primitives more efficiently and lowered the barriers for others making such extensions. One
of these primitive node types is view-plex, discussed more thoroughly in the next section; it
provides a connection between the Activity Coordination System and the Artifacts System.
(The Activity Coordination System Extenders' Guide [Kar] provides full documentation on how
to define new primitive node types.)

In addition to the major enhancements to functionality given above and numerous minor
ones as well, we markedly improved the performance of certain parts of the system and
strengthened the error checking and reporting.

We also invested a significant amount of effort in interacting with our subcontractor,
TRW, a subject discussed more fully in the next section.

3 Lessons Learned

The interaction with TRW on this project provided a beneficial contact with The Real World
(this is not what TRW thinks their name means). As we expected this exercise was useful in
making the Activity Coordination System more robust. Further, it vindicated several
essential features of our work. For example, the process that TRW chose to implement with
our system was already expressed in their own graphical notation. Naturally, the TRW
notation, let us call them "process diagrams", was not identical with that of activity
descriptions, the notation used by the Activity Coordination System but, on the whole, the
match was reasonably close. Simply the exercise of transcribing process diagrams (which
have no execution mechanism and thus no mechanical check on their correctness) into
activity descriptions revealed vagueness and other inconsistencies in the process diagrams.
Further, the biggest discrepancy between the two systems of notation turned out to point up
the importance of the openness which we have touted as a fundamental property of our
system. This discrepancy concerned a notation of TRWs process diagrams which meant,
loosely, "the database." The idea in a process diagram was that a given agent would, at
various points in the process, enter some data into the database," thereby completing a
certain subtask. Other subtasks (typically managed by different personnel) would then be
triggered by the entry of such data.

When we began work, the Activity Coordination System had no notion of "the
database" and, of course, no notion of triggering a subtask by the entry of data. However,
the underlying Plexes System, which provides the basis for both the Artifacts System and the
Activity Coordination System, already had the notion of a "viewer." Further, the
implementation of the "very long execution mechanism," which provides for the persistent
execution of activity descriptions, defined the activations plex. We were able to implement
"the database" and triggering from it with a few simple extensions.

• We changed the notion of viewing to allow an extensible set of viewer types. The
only previously existing use of viewers was to update users displays. We set up one
type to correspond to the existing host-port (for updating users displays) and another
whose purpose was to send plex changes to an activation. The latter, in other words,

CCM Final Report

"wakes up" the activation in the usual way (creates a Unix process for it) and sends it
a message.

• The set of plexes is extensible. To simulate TRW's existing database for the purpose
of this study, we added a new plex, the db plex (more details below).

• The set of node types of the Activity Coordination System is extensible. We added a
new node type called view-plex. This node is general enough to view any plex,
although in the context of this project, we used it only to view the db plex.

The db plex is quite simple. It implements a map from a key to a datum. Conceptually, all
possible keys are in the plex; however, all but a finite number have the empty string as a
datum. The operations on the db plex are enter—given k and d, enter (Jc, d) into the plex—
and lookup—given k. find the current corresponding d. Thus, to remove an element with a
given key, enter that key with an empty datum; to test whether a key is in the database, look
up the key and test whether the resulting datum is null.

All plexes have "filters", whose purpose is to allow a viewer to see only part of the plex;
each plex defines its own notion of filter. For the db plex a filter is a regular expression over
the key and datum as a whole. The view-plex node allows specification of a filter for the plex
it is viewing and, in fact, a bit more: it allows the view-plex node for the db plex to be
triggered on the appearance, disappearance, or change to an entry.

The view-plex node type, although new, is in fact related to the existing node types user-
interface and timer. A node of any of these three types is quiescent most of the time but, when
activated, normally goes through the same basic steps.

• It notifies the outside world of its interest in something. (A timer node sets a timer
running, a user-interface node notifies a user that input is to be supplied, and a view-
plex node makes its activation a viewer on a plex.)

• It waits for something in the outside world to send the activation a message.

• It receives the message and supplies output of the node.

• It re-enters the quiescent state.

The similarity of these node types is apparent to the user, who sees analogous editing
characteristics and semantics, and is exploited by the implementation, since the three node
types share a significant amount of common code.

In summary, with surprisingly little work, we were able to support a style of activity
description that was completely unanticipated at the start of this project and to do so in a
way that was compatible both with TRW's existing approach and with the style of the
existing Activity Coordination System.

Our experience regarding the use of the Artifacts System at TRW is more complex. Part of
the TRW principal investigator's interest in our work originated in the fact that TRW
expends a significant amount of resources in "CM" (configuration management). There is a
CM organization within TRW whose sole purpose is to be trusted with passwords which
programmers don't know: to release a module, a programmer sends a message to a member

CCM Final Report

of the CM organization, who then copies the indicated file(s) to an area that the programmer
cannot modify. (Part of the work; with the Activity Coordination System which TRW did
was concerned with just this process.) The Artifacts System suggests an entirely different
approach to the CM problem, based on the inherent immutability of artifacts. Rather than
having to copy files as the basic release action, the status of artifacts can be indicated by
attributes. With some additions to the current capability of the Artifacts System, the
permission to set attributes can be controlled, for example, by being limited to certain people,
or to certain programs (for example, a test program), or even to a particular activity
description (for example, to ensure that proper administrative actions have been taken).

The Artifacts System represents a radically new approach to the CM problem, which is
now addressed, however inefficiently, by techniques that are ingrained both in individuals
and organizations. Add to this the fact that the Artifacts System is presently integrated into
only one editor and that, despite its daily use in research organizations, it still lacks some
features and performance. After some initial investigation, the task of carrying out even a
pilot study of how use of the Artifacts System might affect configuration management at
TRW was deemed to be beyond the scope of this project, which is why we focused on use of
the Activity Coordination System to assist in the current CM process. We still believe that
adoption of the Artifacts System with some extensions could greatly reduce CM costs at
TRW, but we need to find a path by which the transition can be managed.

4 Next Steps

As its name implies, the Activity Coordination System has as its goal assisting structured
communication within groups of people rather than supporting specific technical activities
such as programming or hardware design. Because of this fact, the natural platforms for the
Activity Coordination System are personal computers, which serve a wider and less technical
user community than Unix workstations. A current goal is to obtain government or
commercial support for a port to these other platforms.

As we indicated above, the Artifacts System represents a crucial component of the most
promising approach to broader configuration management issues, we have an increased
awareness of just how difficult the transition to this new regime will be and are continuing to
look for opportunities to explore technology transition paths that would enable widespread
adoption of these ideas.

5 Bibliography

[Kar] Michael Karr. Extenders' Guide for the Activity Coordination System. Software
Options, Inc., 22 Hilliard Street, Cambridge, MA 02138. Continuously updated.

[Kar93a] Michael Karr. Activity coordination plexes. Working Document, Software Options,
Inc., 22 Hilliard Street, Cambridge, MA 02138. 1993.

[Kar93b] Michael Karr. The activity coordination system. Software Options, Inc., 22 Hilliard
Street. Cambridge, MA 02138. September 1993.

CCM Final Report

[Kar93c] Michael Karr. Activity description editor. Working Document, Software Options,

Inc., 22 Hilliard Street, Cambridge, MA 02138, 1993.

[Kar93d] Michael Karr. A programmable graphics editor based on Emacs, the X toolkit,
and Ghostscript. Working Document, Software Options, Inc., 1993.

[Kar93e] Michael Karr. Users' guide to the programmable graphics editor. Software Options,
Inc., 22 Hilliard Street, Cambridge, MA 02138, July 1993.

[Kar94a] Michael Karr. Boolean algebras and regular expressions. Technical report, Software
Options, Inc., 22 Hilliard Street, Cambridge, MA 0213S, 1994.

[Kar94b] Michael Karr. Extender's Guide for the Plexes System. Technical report, Software
Options, Inc., 22 Hilliard Street, Cambridge, MA 02138, 1994.

[Kar94c] Michael Karr. Permissions. Technical report, Software Options, Inc., 22 Hilliard
Street, Cambridge, MA 02138, 1994.

[KMS93] Michael Karr, Robert T. Morris, and Chris Small. Dynamic types. Software
Options, Inc., 22 Hilliard Street, Cambridge, MA 02138, September 1993.

[KS93] Michael Karr and Chris Small. Procedure based nodes. Software Options, Inc., 22
Hilliard Street, Cambridge, MA 02138, July 1993.

[KT] Michael Karr and Judy G. Townley. Activity Coordination System Users' Manual.
Software Options, Inc., 22 Hilliard Street, Cambridge, MA 02138. Continuously

updated.

[MKS93] Robert T. Morris, Michael Karr, and Chris Small. Transaction graph implemen-
tation. Software Options, Inc., 22 Hilliard Street, Cambridge, MA 02138, October

1993.

[Mor9l] Robert T. Morris. Implementation of an activity coordination system. In Proceed-
ings of the 6th Annual Knowledge-Based Software Engineering Conference. Rome

Laboratory, September 1991.

1

1^™

Appendix A

KBSA Configuration Manager Design

Mike Karr

September 17, 1992

Software Options, Inc.
22 Hilliard Street

Cambridge, Mass. 02138

This work was supported in part with funds provided by the AFSC, Rome Laboratory,
Griffiss AFB, NY 13441-5700 under contract F30602-91-C-0066.

A-l

KB SA Configuration Manager Design

Contents

1 Introduction A-3

2 Plexes A-3
2.1 Monitoring A-3
2.2 Access Control A-5

2.2.1 Introduction A-5
2.2.2 Permissions A-6
2.2.3 The Connection between Filters and Permissions A-7

3 Artifacts A-7
3.1 Extensible Set of Atributes A-7
3.2 Boolean Combinations of Conditions A-8
3.3 Generalized Notion of "up-to-date" A-8

4 Activity Coordination A-9
4.1 Very Long Execution A-10
4.2 Transaction Graphs A-10
4.3 Utilities A-13

A-2

KBSA Configuration Manager Design

1 Introduction

Because the foundation of the KBSA Configuration Manager (KBSA CM) is a cross-coupling
the Artifacts System and the Activity Coordination System,1 the bulk of this document
addresses the design of that coupling and the required modifications and extensions to each
system. We include specifics of the systems only to the extent necessary to understand the
proposed work; for further information, refer to [4, 8, 3, 1] for the Artifacts System and
[2, 5, 7, 6] for the Activity Coordination System.

Our approach relies heavily on the extensible aspects of the Artifacts and the Activity
Coordination Systems. Rather than incorporate knowledge of each directly into the other,
we will exploit the fact that each of the systems has "hooks", i.e., places at which functions
from outside the system can be attached, with the understanding that these functions are
called in specific situations. Thus the coupling of these systems will be based on the fact that
each can provide hooks for the other. Except for those specific connections, we will enhance
both the Artifacts and the Activity Coordination Systems so that the coupling will be more
effective, but this will always be done with the criteria of independence and extensibility
foremost, so that each system continues to appear as if its design was uninfluenced by the
other's existence.

To understand the software design for the KBSA CM, it is necessary to understand the
Plexes System, on top of which both the Artifacts and Activity Coordination Systems are
implemented. For present purposes, it is sufficient to think of a plex as a container of data.
The most important feature of plexes is not the nature of the contents, but the facts that
they may be viewed and that views are active (they are updated as the contents change). For
example, there is an artifacts plex that holds the set of all artifacts; the Artifacts System
also uses several other plexes to hold information, for example, installed tools or which jobs
are currently running. Similarly, the Activity Coordination System uses several plexes, e.g.,
one for the set of all ongoing activities.

In constructing the KBSA CM, we will make modifications to and extensions of the
Plexes System as well as the Artifacts and Activity Coordination (sub)Systems that live on
top of it. The goals of this work may be described succinctly as:

• monitoring—it must be possible for an activity to monitor changes to plexes.

• control—it must be possible to limit what a user can see and do.

The software that we will build may all be traced to these fundamental requirements.

2 Plexes

2.1 Monitoring

We consider how an activity can monitor changes to plexes. To understand this design, it is
first necessary to understand how views on a plex are maintained as the contents change. At

1 Called "transaction graphs" in the proposal.

A-3

KBSA Configuration Manager Design

a very low level, what happens is that any process that makes a change to a plex is obligated
to send "change messages" to all the viewers of the plex. These messages are the means by
which views are updated; the size of a message is proportional to the size of the change, not
the size of the view. The algorithm to send change messages looks in the plex-viewers plex
(one of the few fundamental plexes in the system) to find out who is viewing the plex. In
the current implementation, "who" is a host, port, and an "internal address", uninterpreted
by the Plexes System. The process making the change sends the change message, preceded
by the internal address, to the port on the host, using standard network communication.
The scheme clearly requires that the viewing process register the view in the plex-viewers
plex. In doing so, it chooses the internal address, which it necessarily must interpret when

a change message arrives.
To make it possible for an activity to monitor changes to plexes, it is natural to tap into

the viewing machinery. However, an activity does not have a Unix process associated with
it, so it is not sensible for the "who" in this case to be a host, port, and internal address.
Hence, a reasonable generalization of the plex-viewers plex is that where it now uniformly
has a host and port, it will in the KBSA CM have either a host and port or a pointer to
the activity, i.e., enough information to send the activity the change message. It is also
reasonable to retain the notion of an internal address that is sent along to the activity so
that the activity can more precisely decide what to do about the change.

The proposal to generalize the host and port in the plex-viewers to include an activity
pointer is headed in the right direction, but does not go far enough. It violates the principle
that the Plexes System "knows" as little as possible about the plexes within it, other than
their existence. Currently, the Plexes System knows about only two plexes. One of these
is the plex-viewers plex, which it uses to send change messages (as we just discussed);
the other is the plexes plex, which the user can examine to determine the set of currently
installed plexes, and which tells the Plexes System about the currently installed functionality
for each plex. In a strong sense, the Plexes System does not know about, for example, the
artifacts plex—one could delete this plex and the Plexes System could still be used for

other purposes, e.g., activity coordination.
We know that the desired effect is that we have either a host and port or an activity

pointer in the plex-viewers plex, but we do not want to build into the Plexes System
any knowledge of activity pointers. The only way out is that the "who" field in the plex-
viewers is an axis of extensibility of the Plexes System—a new such axis, because presently it
is always a host and port. There is a standard way in which the Plexes System provides such
extensibility. The essence is that the "who" field will be revised to hold both a "who-type"
and a "who-value". Loosely, the type is used to locate a function responsible for sending
change messages to this type of destination. The Plexes System, instead of just sending to a
host and port, locates the send-function and applies it to the who-value and the concatenation
of the internal address and the change message, all without really understanding what the

send-function might do.
To recover the current functionality, we define the host-and-port type and accompanying

send-function that sends the internal address and change message to the host and port, just
as at present. To obtain the functionality for activities, we define a different who-type and its
send-function as part of the Activity Coordination System, not as part of the Plexes System,

A-4

KBSA Configuration Manager Design

which will continue to be ignorant of the Activity Coordination System, in the sense that
its plexes could all be deleted, and the Plexes System could still be used for other purposes,
e.g., artifacts.

The decision not to build knowledge of activities directly into the Plexes System thus
motivates a more extensible design, in a way that we can precisely characterize: the "who"
field of the plex-viewers plex will be an axis of extensibility. Thus, if a need arises for a
system other than the Activity Coordination System to receive change messages, it will not
be necessary to make any further extensions to the Plexes System. All that will be necessary
is to provide another extension along this existing axis. The end result is that by extensions
along this axis, any system can monitor changes to plexes, in much the same way that a
person can now monitor changes by looking at an active view.

2.2 Access Control2

2.2.1 Introduction

Before embarking on the details of access control for the KBSA CM, we wish to distinguish
between access control and security. We are not attempting to provide a secure system, in
the sense that it resists penetration with malicious intent. First, the system is prototyped
on Unix, whose security capabilities are not up to the task. Second, security is a notoriously
difficult topic, and working on it would divert resources from tasks more central to the success
of the KBSA CM. When we use the term "access control", what we mean is appropriate
limitations on the actions of a user who issues only commands that are part of the KBSA CM
system. Our goal is to develop a sensible, usable system. We believe that an implementation
on a suitable secure platform, perhaps trusted Mach, would add the security component.

Access control in the Plexes System is currently inadequate for the KBSA CM. In this
section, we discuss the necessary enhancements. As with our enhancements of the viewing
apparatus, the approach will be to build into the system as little as possible. The enhance-
ments that are made will take the form of axes of extensibility, in order to make the system
as robust as possible in the face of future requirements.

An important issue in any system of access control is its efficiency. There is an inevitable
trade-off between the specificity of access control and its speed. Our design goal is to choose
the axes of extensibility that are independent of specificity and speed, i.e., the trade-off is
made in the extension rather than in the system. This is a delicate matter, but not directly
at odds with the principle of ignorance.

Because the Plexes System is capable of interacting with several different databases,
and because access control is such a fundamental part of a database, the question naturally
arises as to what could possibly serve as the basis of access control for the Plexes System as a
whole. We have chosen public key cryptography as that basis for several reasons. One of the
reasons is that the Plexes System relies heavily on communication, and almost by definition,
cryptography is a means of securing communication. This is especially important when the
application is activity coordination. A related reason is that encryption allows for secure

2This section represents some significant changes as well as elaborations of the discussion of the same
subject in the first quarterly report.

A-5

KBSA Configuration Manager Design

storage of data in insecure databases with a cost that is related to the degree of security, an
important issue if one does not entirely trust the database. Finally, even when security is to be
achieved by using the security of the database public key cryptography provides authentication
of the user, via digital signatures of identify-friend-or-foe techniques; once identification is
made the access controls of the database itself can be used, saving the expense of encryption.
In short, public key cryptography provides both the necessary power and flexibility for access
control in a context where the database is not a constant.

2.2.2 Permissions

Since we do not wish to build into the Plexes System "knowledge" of a fixed set of operations,
we cannot built into any knowledge of access control for its operations. This suggests that we
need to set up some extensible scheme by which access control for various operations can be
specified.

In common parlance, we speak of "someone" having "permission" to do "something". We
have already identified the "something" in this case as an operation, for example, examining
the contents of an artifact. The "something" will be characterized more formally as a plex/token
pair, where the token is simply a string that names the operation. (In some cases several
operations may share the same token.) We have not yet identified the "someone". For want of
a better term, we will call the "someone" a user , which we will discuss in greater detail below.
Finally, for a given plex/token/user triple, there will be a permission that limits what a user can
do with an operation applied to particular arguments. For example, for the artifacts plex, there
will be an examine token. If I attempt to examine an artifact, the attributes of the artifact in
question are tested against my permission for artifacts/examine. The result determines
whether the function examine-artifact will actually show me the contents of the artifact.

A consequence of the approach outlined in the previous paragraph is that a user must
become a formal object in the system. In fact, there is already a users plex that lists the
various users, but this plex is purely an extension-the Plexes System does not know anything
about it except that it exists. We will revise the users plex so that it associates with each user a
be public key and the permissions for various plex/token pairs. We will revise operations that
are built into the Plexes System, for example the view-plex command (see section 2.2.3 for
more details), so that they consult this plex to ensure that user has access to no more
functionally than indicated by his permissions. Thus, the users plex, with its public key and
permissions data, will join the plexes and plex-viewers plexes as a fundamental plex, i.e. one
which the Plexes System consults in performing its own operations. We will also modify the
plexes plex so that implementors of each plex can define the essential units of permission for
that plex.

The detailed design of permissions including required revisions of the plexes and users plex
is documented under a separate title Permissions. The Permissions document is written from
two points of view, the naive user of the system and an extender, specifically someone
implementing a plex. These descriptions are sufficiently detailed that they describe a software
design for the modifications that we will make to the plexes and users plexes.

A-6

KBSA Configuration Manager Design

2.2.3 The Connection between Filters and Permissions

A view on a plex does not show everything that is in the plex; rather, the information in
a view is limited by a filter. For example, a filter on a view of the artifacts plex limits
the artifacts in the view to those having certain attributes: one view of the artifacts plex
might have only those artifacts created by "mike", while another view might have artifacts
created by "mike" or "doug".

The relevance of filters to the question of access is that they already have the property
of limiting what can be seen. A natural way of imposing access control on plexes in general,
not merely the artifacts plex, is to posit that for every plex p, there is a token view, and
that a user's permission for any p/view is simply a filter for viewing plex p. Thus, each user
has, for each plex, what amounts to a "maximal view filter" that limits any view of the plex
for that user. More precisely, it would be reasonable to require that filters are ordered under
restrictiveness, and that the filter for any view that a user has on a plex is not less restrictive
than the user's maximal view filter for that plex.

3 Artifacts

The Artifacts System presently allows only a fixed set of attributes that may be attached
to artifacts: type, name, creator, timestamp, and up-to-date. (These are explained in [8].)
Further, a filter is a conjunction of conditions on each one of these individually. The main
enhancement to the Artifacts System for its role in the KBSA CM is a generalization of this
attribute scheme, in three important ways: the set of attributes will be extensible, filters
will be closed under boolean combinations, and the notion of up-to-date will be considerably
generalized. Because the Activity Coordination System interacts with the Artifacts System
via viewing the artifacts plex and manipulating permissions for its tokens, enhancements
of the generality and specificity of attributes and their filters is crucial to the overall power
of the KBSA CM. The following sections discuss each of the three enhancements in greater
detail.

3.1 Extensible Set of Attributes

Suppose that it is desirable to add the notion of "releasing" an artifact. To do so, a user
would declare a new attribute called "release" and define a release activity that attaches
a "release" attribute which is the time of the release. Filters on the artifacts plex will
then, as one of their conditions, be able to test that an artifact has a release date in some
particular time interval. Further, one could specify an activity that monitored newly released
artifacts, which would, say, notify interested parties, perhaps in a way that depended on other
attributes of the artifact. It is examples like these that support the claim that extensible
attributes play an important role in the KBSA CM.

A-7

KBSA Configuration Manager Design

3.2 Boolean Combinations of Conditions

The second generalization of the attribute machinery is that a filter will be an arbitrary
boolean combination of conditions on individual attributes. For example, it will be possible
to view a set of artifacts that are created by a particular user and released before a given date
or that are created by another user and released after another date. As the discussion in the
Permissions document motivates, permissions must be closed under disjunction, conjunction,
and complement, i.e., must be a boolean algebra. Since view filters are permissions, filters
for the artifacts plex in particular must constitute a boolean algebra, and further, they

must constitute an extensible boolean algebra.
Let us consider the task of declaring a new attribute for the artifacts plex. It is

certainly not reasonable to require that the user, most likely not a mathematician, think
in terms of boolean algebras. Instead, the user specifies the domain of values in which the
attributes lie. Each of these domains carries with it the set of possible filters for attributes
based on that domain. The domains are an axis of extensibility—a deep one because the
extender must know about boolean algebra—but this axis is not extended by a user who is

declaring a new attribute, which uses an existing domain.
The issues of providing for the extensibility of attribute domains are twofold. First, it

is necessary to specify, for the extender, the precise interface that an extension must meet.
This interface specification is officially part of this Software Design Document, but because
it will become part of the "Extenders' Guides" series (along with [3, 1]), it is separately
titled Attribute Domains. This document also describes the set of domains that will be done
under this contract, and thus initially available. This list of domains will be sufficient for

most practical purposes.
Second, it is necessary to provide a large boolean algebra whose elements are the afore-

mentioned "most general boolean combination" of the filters for the individual attributes.
Part of the work we have performed on this contract has been to develop the appropriate
mathematical construction for this purpose. This work is officially part of this Software De-
sign Document, but is separately titled (Boolean Algebras and Regular Expressions) because

it is of independent interest and will be submitted for publication.
A significant feature of the new design is that attribute domains will not be specifically

tied to any particular plex in the way that they now are to the artifacts and drafts
plexes. Rather, it will become significantly easier to implement a plex that uses attributes,
and extensions to attribute domains will then benefit all such plexes.

3.3 Generalized Notion of "up-to-date"

At present, by definition:

• An artifact is up-to-date ■& it has no successors and all of it references are up-to-date.

This notion is inadequate, as demonstrated when there is a branching line of development.
Suppose, for example, that there is a, released system, and that a developer wants to start
a new line of development beginning with that system. With the current uniform notion of
up-to-date, the released system is technically out-of-date as soon as the branch is established.

A-8

KBSA Configuration Manager Design

However, there is an important intuitive sense in which the released system is still up-to-
date as far as released systems are concerned. Suppose further that while the new line of
development is being pursued, a small bug is discovered in the released system. Then it
is perfectly reasonable to supersede the released system with a system which incorporates
the fix to the new system. After doing so, the original released system is intuitively out-of-
date even as a released system. (The issue of incorporating the fix in the branching line of
development is a different matter, one which the developer must worry about.)

It is important that the KBSA CM be able to capture formally the intuitive notion that
the property of being up-to-date is relative, because keeping configurations "up to date",
for varying definitions of "up to date", is an important action in change and configuration
management. Since the notion of filters is already present in the system, it is natural to
relativize with respect to filters, and make the following definition:

• An artifact is up-to-date with respect to a filter / <=>:

— There is a null intersection of the artifacts in the transitive closure of its successors
and those in a view filtered by /.

- All of its references are up-to-date with respect to /.

Thus, the current property of being up-to-date is the new property of being up-to-date with
respect to the filter that passes all artifacts. To solve the problem posed in the previous
paragraph, one could introduce a boolean attribute "released" (which might also be used
in activity coordination). Then the intuitive notion "up-to-date as far as released systems
are concerned" would quite formally be "up-to-date with respect to the filter that passes all
artifacts whose 'released' attribute is true".

With this generalization, "up-to-date" will no longer be implemented as an attribute.
However, the syntax for filters will treat it just like other attributes, so that the user has
a uniform way of specifying such filters. The key difference between "up-to-date" and true
attributes is that whether an artifact is up-to-date depends crucially on its successors and
references—you cannot, for example, "set" the up-to-date-ness of an artifact arbitrarily to
true or false.

4 Activity Coordination

Recall that in section 2.1 we described the "hook" by which the Plexes System can announce
changes to plexes in quite arbitrary ways: the "who" field of the plex-viewers plex will be
an axis of extensibility. The subject of this section is the particular extension for the Activity
Coordination System. The implementation necessarily reflects the layered implementation
of the Activity Coordination System, which is an implementation of transaction graphs on
top of a very long execution mechanism. The first two sections below discuss these layers

separately.

A-9

KBSA Configuration Manager Design

4.1 Very Long Execution

The very long execution mechanism provides for persistent execution of programs. The
fundamental object is an "activation", an analogue of what is called a "process" in the Unix
operating system. An activation may be "awake" in which case there is an operating system
process that corresponds to it, or it may be "asleep", in which case the state of the process
is recorded as an executable file (to be run which it is next awakened) and a "state object"
(typically a file) that is supplied as input when the process is awakened. Any process may
send a message to an activation, using a function in a subroutine package supplied by the
system. If the activation is awake, the message is sent to the operating system process; if the
activation is asleep, it is first awakened (and supplied its state object), and then the message
is sent to the process. There are also facilities for initiating and aborting activations. Also,
the process that runs on behalf of an activation may request to go to sleep, or may indicate
normal (as opposed to aborted) termination of the activation.

Just as a Unix process has an id (the "pid"), there is an "activation id". The set of
currently executing activations is recorded in the activations plex, as a map from activation
id to the information about that activation, i.e., whether it is awake, if so, where messages
to it should be sent, and if not, its executable file and state object.3

The route by which changes to plexes will be monitored by activities is by a simple
extension to the "who" field of the plex-viewers plex: this field may be an activation id,
in which case, the change message is "sent" to that activation in the above sense, i.e., the
activation will be awakened if it is asleep, and in any case, the associated operating system
process will receive the message. (Recall the extensibility of the "who" field from section 2.1.)

4.2 Transaction Graphs

A transaction graph ultimately consists of a set of primitive activity descriptions, each of
which is implemented by of a set of functions incorporated into executables. Thus, to get
information from change messages into a form usable by transaction graphs, it is necessary
to make two kinds of functionality available in primitive activity descriptions:

• Modify the plex-viewers plex either by adding a new viewer of a plex, specifying a
given filter, or change an existing entry to have a new filter, or delete an entry.

• Respond to change messages.

To avoid proliferation of primitive activity descriptions, we will add only one, known as a
"view-plex", drawn as a quarter ellipse. All incident arrows use
send/receive protocols (see [2] for a discussion of "protocols",
including send/receive). The arrows that enter the left edge
receive a plex and a filter to add/change/delete viewers, plus a

third input whose purpose will be discussed below.

3The executable file and state object are retained even when it is awake, for restart in case of failure.
This gets into issues that don't directly concern us here.

A-10

KBSA Configuration Manager Design

Because plexes are so general, the Plexes System imposes no special structure on a change
message—it is simply a string that all viewers of the plex know how to interpret. This is fine
if the viewing process is an editor, because it can be programmed to use the string to make
an update to a display and the display is readily understood by a user, even if the details of
the change message are cryptic. But it is clearly not reasonable that an activity description,
which is supposed to be exceedingly easy to specify, be programmed at the graphical level
to parse the change message and present something sensible to the user.

To meet the conflicting goals of avoiding proliferation of primitive activity descriptions
and excessive programming at the graphical level, the view-plex activity description takes, in
addition to the plex and filter, a change table, a plex-specific data structure used to decode
the change message and produce or suppress the output of a view-plex node. The idea is that
a change table is supposed to be easy to specify by any user who understands the purpose
and appearance (but not the implementation) of the particular plex. A running transaction
graph will be able to accept a. change table as input (see the next section), as will the editor,
if one wishes to fix the change table when editing.

To specify the semantics of a view-plex node, we posit the existence of two vectors of
functions, each indexed by plex.

• view-plex—given an activation id, node name within the activation, plex, and filter, it
establishes the node in the activation as a view on the plex with the filter, and yields
a view structure (a data structure of the plex implementor's choosing) for that plex.

• review-plex—given a view structure for a plex, a change table, and a change message,
it updates the view structure and yields either nil (meaning that the view-plex node is
not to respond to this change), or else yields the value to be placed on the output arc
of the view-plex node.

The actions of a view-plex node are as follows. With each wave of inputs on the left, a
view on the plex is established using the appropriate element of the view-plex vector. The
entry in the plex-viewers plex specifies that changes to the plex that affect the view cause
change messages to arrive at the node. (If the view from this node of this instantiation of
the activity description already exists, remove the view (if the filter is nil) or change the
filter (otherwise); if the view does not already exist and the filter is not nil, establish a new
view). The view structure that results is incorporated into the state of the node.

Change messages will arrive at this node as "out-of-graph" messages (see [2]). When a
change message arrives, apply the appropriate element of the review-plex vector to the view
structure, change table, and message. If the result is not nil, place the value on the output
arc.

This describes an extensible scheme for the viewing of plexes by activity descriptions,
but to complete the story, we need to show how a change table will work for the artifacts
plex in particular, for two reasons: (a) to provide an existence proof that change tables can
be made simple to specify and yet provide enough flexibility so that activity descriptions can
act on changes in interesting ways, and (b) because the connection between the artifacts
plex and activity coordination is especially important to the KBSA CM. Change tables for
the artifacts plex are motivated by two considerations:

A-ll

1

KBSA Configuration Manager Design

• A user of the artifacts plex already knows about attributes and filters for it.

• A change to a view on the artifacts plex is either because an artifact enters it, leaves
it, or remains in it but one or more of its attributes has a changed value.

Accordingly, a change table for the artifacts plex is simply a list of the attributes whose
corresponding values the view is sensitive to, and the element of the review-plex vector

element for artifacts behaves as follows.

• If a new artifact enters the view, the result is (nil,p), where p is the artifact.

• If an artifact lea.ves the view, the result is (a, nil), where a is the list of attribute/value
pairs of the artifact that was in the view (the old artifact itself cannot be in the result
if the reason that it left that view was that it was deleted; for uniformity, the result
always has only the attributes, not the artifact).

• If an artifact remains in the view but some of its attributes have changed values, the
result is (a,p), where a is the list of attribute/value pairs of the artifact where the
values have been superseded, and p is the artifact (from which current attributes may

be obtained directly).

To use the result of a view-plex node in a larger activity description, there are utilities for
manipulating artifacts, change tables, attribute/value lists, etc; these are discussed in the

next section.
As an example of aiding change and configuration management with an activity descrip-

tion that views the artifacts plex, suppose that a project has some notion of a public
library, which every one in the project is free to use and perhaps modify; however, it is
desirable that any change in the library is announced to all the members of the project.
This could be accomplished as follows. Declare a new boolean attribute, say public-library,
where the value of this attribute is true if the artifact is considered to be in the library by
appropriately setting the value of the public-library attribute. Then, define an activity
description with a view-plex node that views the artifacts plex with the filter public-
library & up-to-date (public-library),4 and with a change table specifying only the
"name" attribute, so that changes to other attributes are ignored. On receiving a change,
the activity description sends a message to all the members of the project. They thus find
out when an artifact is superseded by a new version, when artifacts are entered or removed

from the library, and when artifacts are renamed.
This is only the simplest of examples; one can imagine much more elaborate connections

between low level changes to the status of configurations (i.e., changes in the artifacts

plex) and high level activity that must precede or follow such changes.

4In English, this filter is true of artifacts whose public-library attribute is true and which are up-to-date
with respect to that property.

A-12

KBSA Configuration Manager Design

*

4.3 Utilities

The connection between the artifacts plex and transaction graphs requires a number of
simple utilities for manipulating values related to artifacts in activity descriptions. First,
an input node (which is polymorphic anyway) needs to be able to input and output (i.e.,
display) the following kinds of values:

• artifacts (For example, an activity description might specify the delivery of a design
document at a certain point; this would be done by specifying that an artifact is legal

input at a particular input node.)

• filters and change tables (Because they are used in view-plex nodes.)

• attribute/value lists (Because they are produced by view-plex nodes.)

• permissions (Because sometimes permissions are granted only after certain activities
have taken place.)

It will also be necessary to have procedures for manipulating artifacts and their filters and
attributes. By "procedure" here, we mean rather specifically one that can be used in the
context of a procedure-based node (see [2]). The following list is minimal, and may be

expanded upon:

• artifact-passes-filter—given an artifact and a filter, do its attributes pass the filter?

• get-artifact-attribute—given an artifact and an attribute name, obtain the current
value of the attribute of the artifact.

• set-artifact-attribute—given an artifact, attribute name, and value, attempt to set the
artifact attribute to the value. Yield true if successful, and false if permission denied.

None of these utilities represent a design effort or much of an implementation effort.

References
[1] Michael Karr. Extender's Guide for the Plexes System. Technical Document, Software

Options, Inc. Continuously updated.

[2] Michael Karr. Transaction Graphs: A Sketch Formalism for Activity Coordination.
Technical Report RADC-TR-90-347, Rome Air Development Center, December 1990.

[3] Michael Karr, Glenn Holloway, and Steve Rozen. Extender's Guide for Artifacts and
Drafts. Technical Document, Software Options, Inc. Continuously updated.

[4] Michael Karr and Glenn H. Holloway. Beyond the Read-Eval Loop: Architecture of the
E-L Environment. Technical Report SOI-02-89, Software Options, Inc., August 1989.

[5] Mike Karr and Thomas E. Cheat ham. A Solution to the ISPW-6 Software Process. In
Software Process Workshop, October 1990.

A-13

KBSA Configuration Manager Design

[6] Robert Morris. Activity Description Cookbook. Technical Document, Software Options,

Inc. Continuously updated.

[7] Robert Morris. Implementation of an Activity Coordination System. In 6th Annual
Knowledge-Based Software Engineering Conference, pages 264-275, Rome Laboratory,

Griffiss AFB, New York, September 1991.

[8] Judy G. Townley. E-L Users' Manual. Technical Document, Software Options, Inc.
Continuously updated.

A-14

Appendix B

Beyond the Read-Eval Loop:
The Artifacts System

Mike Karr

September 2, 1993

Software Options, Inc.
22 Hilliard Street

Cambridge, Mass. 0213S

The purpose of the Artifacts System is to structure complex, evolving data, to assist users
in their cooperative effort to develop such data, and to integrate the tools that operate
on and produce this data. A key element in the design is to eliminate what is the usual
interaction with a computer-based system: run a tool to achieve a desired effect. Rather,
users of the Artifacts System set up structures that indicate desired results, and can browse
these structures in hypertext-like fashion; tool invocation is usually implicit. Version and
configuration management is an integral part of the system, not a facility on the side.

Keywords: configuration management, tool integration, version control

This work was supported in part with funds provided by ARPA, under contracts N00014-85-
0710 and N00014-90-0024, and in part by the AFSC, Rome Laboratory, Griffiss AFB, NY
13441-5700 under contract F30602-91-C-0066.

B-l

The Artifacts System

Contents

1 Introduction B-3

2 Fundamental Relations B-3
2.1 References B-4
2.2 Derivatives B-7
2.3 Successors and Predecessors B-8

3 Editing B-10

4 Bodies and Handles B-ll

5 Plexes B-13

6 Present Status and Future Plans B-14

7 Conclusions B-14

8 Bibliography B-15

B-2

The Artifacts System

1 Introduction

The Artifacts System is a product-centered system that addresses areas such as software,
electrical, or mechanical design in which:

• Editing is a central activity.

• The data is large and highly structured.

• The data evolves, usually linearly, but occasionally with branches and merges.

• Several people work jointly on a project.

• There is much derived information which is expensive both to compute and to store.

• The set of tools that compute derived information changes (usually grows).

• There is a heterogeneous network of computers which can be exploited as a whole.

• Users interact with the system via bit-mapped graphics.

The challenges and opportunities implicit in these premises require a change in the usual
paradigm for interaction with a computer-based system: run a tool to achieve a desired
effect. Whether the system is Lisp-style, where the interaction is the successive evaluation
of forms, or UNIX-style, with its successive execution of programs, the end result is that the
user spends a large amount of time trying to manage a vast sea of relatively unstructured
project data. In the Artifacts System, a user sets up a structure that specifies a desired
result, and the system is responsible for the details of tool invocation.

2 Fundamental Relations

An artifact is the fundamental unit of data in the system. Like a file, an artifact has contents
used to store data of interest to users, and like a file system, the Artifacts System does not
interpret the contents. An artifact differs from a file in that its contents never change. In
this respect, it is more like a "version" of a file, as long as one's notion of a file system does
not allow changing the contents of a version of a file. The term "artifact" was chosen with
its archaeological connotation in mind: small, created some time ago, and unchanging. The
immutability property may seem surprising at first, but as we shall see, it plays a key role
in providing a proper basis for tracking the evolution of a large and constantly changing
structure, such as a program or document.

An artifact has a type, and typing of artifacts plays a central role in integrating tools.
The set of types grows as new tools are added to the environment. In classical file systems,
naming conventions are often used to achieve something of the effect of types, but there is
generally no enforced correspondence between a naming convention and the contents of a
file. Types of artifacts are used in a classical programming way: they govern the structure
of the contents of an artifact and the operations that can be applied to it. Extenders of the

B-3

The Artifacts System

environment provide new types whose operations conform to prescribed rules (analogous to

"method interfaces" or "roles" in object-oriented programming).
Both file systems and the Artifacts System have "fine structure" and "coarse structure"

of data. We will use the term "fine structure" to refer to the contents of artifacts. The
term "coarse structure" will refer to the constructs that the system provides and uses in
locating and grouping the fundamental units of data. In a file system, this is provided by
the directory structure, by which we mean the conceptual structure exposed by its interface.
For example, the coarse structure of the UNIX file system has soft and hard links, as well
as other constructs detectable by UNIX system calls, e.g., inodes. Another property of file
systems is that the names by which a user locates files are an integral part of the coarse
structure; they typically name branches in the directory, for example. The same names are
used by programs that access files. In the Artifacts System, there is a notion of an artifact
"pointer", a unique identifier that is used by programs manipulating artifacts, but not by
people. These pointers may be involved in an open-ended set of relations or other structures,
a topic explored more fully in section 5, where we will see how artifacts are "named" and

given other attributes of interest to people.
The following fundamental relations provide the "coarse structure" of the Artifacts Sys-

tem that is of interest to tools:

• references—connects fine and coarse structure.

• derivative—records the results of tool invocation.

• successor/predecessor—tracks the evolution of artifacts.

The following sections discuss these relations in more detail.

2.1 References

A reference from one artifact to another occurs at a particular point in the contents of the ref-
erencing artifact. For example, the artifact that specifies this document refers, immediately

below, to an artifact of type C-module:

The printline module
 Targets :
 Source
[stdio.h](spec)

global Void
j printline(s)

char *s;

{
printf(s);

printf("\n");

}

What appears in this document is the typeset form of the artifact, but in the interactive use
of the system, references appear as highlighted regions on the screen. Commands that take

B-4

1
«

The Artifacts System

artifacts as arguments default to an artifact near the cursor, if possible. Since one of these
commands is "examine-artifact", the overall effect is that of browsing through hypertext.

The first line of the above inset is the caption. We shall discuss the targets section in
connection with the next example. The purpose of the source section is to supply both text
to be compiled by a C compiler, corresponding to the usual . c file, as well as the interface,
or spec, that other modules need to use the public functions defined within it, corresponding
to the usual .h file. The first line of the source section corresponds to #include <stdio.h>
in an ordinary . c file. It is the typeset form of an artifact reference to an artifact of type
universal; these artifacts are used to link the artifact world to the file world without
duplicating information but maintaining the unmodifiability of artifacts—if there is a change
to the file to which the artifact refers, the Artifacts System eventually discovers this fact, with
very high probability. Thus, the Artifacts System provides a consistent view of immutable
artifacts, yet has a pragmatic connection to mutable files.

The user of the Artifacts System has the option of defining the spec (.h file) for a C-
module artifact implicitly. In the above module, the definition of the printline function is
marked as "global" in the artifact, and the spec for this module is constructed to contain the
suitable declaration for printline. (The typeset version of the artifact marks such regions
with a marginal tag.) The advantage of using this style is that the header of a function
appears only once, so it is impossible to have an inconsistent declaration and definition.

The following artifact refers to the spec of the previous one:

The hello module
 Targets —
sun4 [gec (universal artifact)] -g
 Source ———
[The printline module](spec)

void
mainO
■C

[The body of the main program for hello]
}

In this example, there is a non-empty targets section. In general, a target section in a C-
module artifact may have 0 or more lines, each of which specifies a particular compilation of
the module. In this case, the one target specifies the machine architecture "sun4" and that
the compilation will be done with gec, again using a universal artifact to link into the file
system; the rest of the line (-g) specifies compiler switches.

The body of the function main has a reference to an artifact without (spec). This is to
a C-source artifact, the purpose of which is merely to allow the text that the compiler will
see to be broken into small pieces and scattered through a document, for example, here:

The body of the main program for hello
Printline("Hello world!");

This particular example is excessively fine-grained, and intended only as a.n illustration, both

B-5

The Artifacts System

of references and of the way in which the Artifacts System supports the tight integration of
programs and documentation. (See the end of section 2.3 for more about MjjX.)

To complete this example, the following unix-program artifact (deliberately uncap-
tioned) specifies an executable for each of two architectures.

Targets
sun4-dbg [cc (universal artifact)] -g

C [cc (universal artifact)] -g
mips-pro [gcc (universal artifact)]

C [gcc (universal artifact)] -0
 Modules/Instructions __ —

[The hello module]

The targets section of this artifact has two subsections (each beginning with a non-indented
line), one for the sun4 architecture and one for the mips. The respective variants (dbg and
pro) are simply to name the switch combinations (for the linker) that follow. (Non-blank
variants are not necessary here, but would be if there were more than one target for a given
architecture.) The dbg variant supplies the -g switch, and the pro variant, no switches. On
the first line of each subsection is an artifact reference to the linker. In the usual C style, we
have used the same program for linking that is used for compiling, but this is not required;
for example, one could use Id directly.

The indented lines of a target subsection specify how to compile the modules of the
program. Each such line begins with a language C (here, "C") and has an artifact for a
compiler, followed by switches. The machinery has much more flexibility than needs to be
explained in this paper, and we give only the rules sufficient to explain the above examples.

• If the target section of a module artifact has an entry for the same architecture and
variant as that for the executable target, use the object module specified by the module

artifact.

• Otherwise, if the module is written in language £ and if there is a line in the subsection
of the unix-program artifact beginning with £, use the compiler and switches on that

line to compile the module.

• Otherwise, issue an error.

Thus, even though the C-module artifacts did not say how they should be compiled for the
mips, it is still possible to use them in a mips executable. Also, the compilation specified for
the hello module is not used in the executable on the sun4, because there, the variant is
blank, while the unix-program artifact wanted a dbg variant. (Features not discussed here
allow one variant of a program to use differing variants of modules.)

The Modules/Instructions section of the unix-program artifact provides the modules
that make up the executable, together with instructions (switches) to the linker (for the case
in which switches need to be between modules—here, there are no switches). Note that only
the hello module is given, and not the printline module. The default rule is that modules
on which other modules depend are included in the list of modules given to the linker. Thus,

B-6

The Artifacts System

if a programmer uses artifact references to indicate dependencies, there is a guarantee that

all the relevant modules are put into the executable.
We mentioned earlier that an artifact is somewhat like a version of a file. In this section,

we have seen that artifacts have references to other artifacts. This is a bit like a file embedding
the names of other files, or rather a version of a file embedding the names and versions of
other files. However, there is a crucial difference: unlike a file system (or most configuration
management systems, such as RCS [Tic85]), the Artifacts System knows which artifacts
refer to other artifacts at the coarse level. (The locations of the references within the fine
structure of an artifact are known only to corresponding type-specific tools.) This property
means that there is a natural formal definition in the Artifacts System for a term that is

widely used intuitively:

• A configuration is the artifact structure in the transitive closure of the references rela-

tion starting at a given artifact (the "root").

The Artifacts System does not allow the deletion of an artifact referenced from another
artifact, thereby guaranteeing the integrity of configurations.

When we integrated language tools into the Artifacts System, we chose to represent the
compilers explicitly as artifacts. Thus they become literally part of a configuration.

2.2 Derivatives

In section 1, we gave the rule that "a user sets up a structure that specifies a desired result".
We can now be precise about exactly what that structure is: a configuration. This section
concerns the "desired result", which we shall call a derivative. For the rule to hold, it is
necessary that a derivative be completely determined by the configuration rooted at the
artifact. The rule that a. derivative cannot depend on information outside artifacts is why,
for example, compilers and switches appear in artifacts—they are responsible for producing

a derivative.
An artifact may have several kinds of derivatives. For example, the unix-program artifact

above has derivatives of kinds executable*/.sun4-dbg and executable'/.mips-pro. Similarly,
the hello C-module artifact has an object°/.sun4 derivative. Technically, the derivative
relation consists of triples (p,k,d), where p is the artifact pointer (unique identifier), k is
the kind, and d is the derivative; for any given p, k pair, there is at most one such triple.
Derivatives are stored as the &-derivative of an artifact. The effect of this in the user's view
is that derivatives never rattle around loose in the Artifacts System, in contrast with file
systems in which, for example, locating the files that go into a particular executable is by
itself an uncertain process, never mind trying to determine what procedure and what options
might have been used to derive the . o files incorporated into the executable.

The user usually deals directly with artifacts, not their derivatives. For example, the
command to execute a derived program takes an artifact as an argument, and looks for a
derivative whose kind is of the form execut a.ble'/,machine-variant, where machine (i.e., the
architecture) is the same as that on which the command is issued. If there is precisely one
variant for the machine, then that derivative is used; if more than one, the user is asked to

specify the variant.

B-7

The Artifacts System

A deriver is a tool that takes a single artifact as an argument and produces derivatives.
The requirement that a deriver take a single argument is not really a limitation; all it says
is that what one ordinarily thinks of as arguments must be gathered into a single artifact.
This is necessary to provide the simple model for tracking derivatives described above, and
has other advantages which we will see later. Far from being a limitation, the idea that an
artifact defines the inputs for a deriver is the basis for the openness of the Artifacts System:
it is extended by the joint additions of derivers and types. For example, the purpose of the
unix-program type is to integrate linkers. Similarly, the purpose of the £-module type is
to integrate compilers for the language C.

A key element in the design of derivers is that they work by scanning the contents of
an artifact and requesting particular kinds of derivatives of references, regardless of the
type of the reference. For example, a unix-program artifact is not restricted to referring
to £-module artifacts; rather, the requirement is that the module referred to must have
a module-summary derivative, which in turn says what language the module is written in,
which object*/,. . . derivatives it supplies, and the transitive closure of dependent modules.
Thus, the kind says what is wanted from an artifact, and the type says what its structure is;
the two together specify a somewhat object-oriented approach to locating a deriver, similax
to that found in other tool-integration systems, e.g., [Har87].

The principle that a deriver look only at the derivatives of references is important in the
openness of the system because it provides a narrow boundary around the deriver. It means
that there is a simple way to write derivers to exploit network-wide computing resources
(similar to [LJ87]):

• Phase 1—Scan the contents of the artifacts, and determine which kinds of derivatives
are needed from which references. Structure this as a list of pairs (p,-, &,-),- which we
call a request, and submit it.

• Interphase—Accept the request, figure out which of the derivatives already exist, and
if necessary, schedule jobs to compute the rest. If a job to produce the derivative is
already scheduled or running, a new job is not scheduled. The jobs are run concurrently
as resources become available, and eventually all the derivatives (J,-),- exist.

• Phase 2 (optional)—Using the derivatives obtained so far, submit new requests to
gather more derivatives, iterating until sufficient information has been obtained. (This
involves an interphase for each additional request.)

• Phase 3—Using the collected derivatives, construct the derivative(s) for this artifact,
and inform the system (so that it can record it and give it to jobs that may be waiting).

The difficult part of the implementation is the "interphase" part, but extenders don't have
to worry about this—they just provide a serial program.

2.3 Successors and Predecessors

The successor relation is a simple binary relation on artifacts; the predecessor relation is its
inverse. They are used to track the evolutionary relationship of artifacts. The number of

B-8

The Artifacts System

successors and predecessors is unconstrained, so this can be used to record branching and

merging.
In addition to its obvious role in history keeping, the successor relation also plays a role

in detecting simultaneous edits, as follows. An artifact is defined to be out-of-date if it has a
successor or if it references an out-of-date artifact. (Thus the root of a configuration is up-
to-date if and only if all the artifacts in the configuration are up-to-date.) When a user asks
to supersede an artifact, i.e., establish a new successor for it, there is a warning if the artifact
is out-of-date. The user may decide to proceed—this is how branching is possible—but has
at least been warned that a departure from linear evolution has occurred.

From a pragmatic point of view, the most important aspect of the historical relations is

their role in incremental tools.

• Even though a derivative is determined by its contents and references, it may be com-
puted by chasing successor/predecessor links and looking at the contents and deriva-

tives of other artifacts.

For example, suppose we add a comment to the above C-module artifact. The C-module
deriver does not scan an artifact and its predecessor to see if only comments have changed,
so the module will be recompiled. However, it does check to see if the result of compilation
has produced the same object file, and since the comment does not affect the object file, it
will see these are indeed the same. It then discards the new file, and uses the old one as
the derivative even though a timestamp would indicate that it is invalid. Then, the unix-
program deriver, which checks to see that either the contents of the unix-program artifact
have changed (modulo references) or that at least, one of the object modules is different, will
see no differences. Then without even calling the linker, it knows that the executable will be
the same as before, and installs the old executable as the derivative of the new artifact. The
advantages of recording historical and derivative relations explicitly, as opposed to the more
common naming conventions and timestamps, should be clear—less chance for error and
greater opportunities to avoid unneeded rederivation. Further, timestamps are not reliable
when compilation is done on a network with clocks that are insufficiently synchronized.

Among derivers so far installed, the one with the most sophisticated incremental behavior
is that for MgX artifacts. The user sets up a configuration rooted at an artifact of type
latex-root. The deriver appropriately runs MgX, BlBTEX, and makeindex (as well as
whatever typesetting tools have been installed for other artifacts, e.g., for C-module,...) to
yield a latex-directory derivative, which the user does not directly perceive, but exploits
by such commands as preview, ps-preview, hardcopy, and dvi-f ile (to export a dvi file).
A latex-directory derivative is actually a UNIX directory with the usual files that one
associates with MfcX, plus a few more for bookkeeping. The latex-directory deriver
for a latex-root artifact looks for the same derivative of a predecessor, and for multipart
documents, is very sophisticated about the parts of the document on which ET^X must be
re-run, and in some cases can avoid runs that a person cannot because of its manipulation
of bookkeeping files. Part of this sophistication stems from a subversion of the usual MjjX
commands for counters and labels which records whether these entities are referenced and/or
set by a particular part, so that the deriver knows what parts are affected by a change.
Suppose, for example, that a configuration rooted at a latex-root is superseded by one in

B-9

The Artifacts System

which the only textual change is to a bibliography entry. The deriver runs BlBTEX; if this
causes a change to the appearance of the bibliography, it reruns JATgX on the part containing
the bibliography; if the change to the entry caused a change to a citation, it reruns WFgX
only on sections in which the citation appears. Only those who have used the bibliography
mechanism of lATgX can appreciate the hassle reduction and reliability increase that this

provides.

3 Editing
An artifact that is prepared by editing begins its life as a draft, which for present purposes is
simply an edit buffer whose contents are destined to become the contents of an artifact. Like
artifacts, drafts have types. The essential difference between a draft and an artifact is that
the contents of a draft change as editing proceeds. A draft may reference (in the technical
sense of the word) both artifacts and drafts, but artifacts may not reference drafts—artifacts
are stable, and drafts are not. It may in fact reference drafts that others are editing.

Because artifacts are immutable, "editing an artifact" actually creates a new artifact.
This naturally happens in stages. First, a new draft is created and its contents are initialized
to those of the existing artifact; the draft will have a single predecessor, the artifact. One
may also start editing from nothing, in which case the draft is initialized in the canonical
way for its type, and the predecessor set is null. Once editing is under way, one may "merge"
any number of artifact into the draft, in which case the contents of each artifact are added
to those of the draft and each artifact is added to the set of predecessors. (A draft cannot
have drafts as predecessors; there seems to be no use for it.)

Regardless of how a draft is started, it is turned into an artifact by committing it. This
causes the draft to disappear and a new artifact to appear, having the same contents as the
draft. If the draft references other drafts, the commit command either first commits the
referenced drafts,1 or balks, depending upon user's preference and whether the referenced
draft is the user's own or someone else's (one user cannot commit another's edit). The
predecessors of the new artifact are those of the draft. The immutability of artifacts obviates
the need for check-in/check-out.

The predecessor relationship for drafts is used not only to obtain the corresponding
information for the eventual artifact, it also plays a role in detecting a simultaneous edit.
Analogous to the way that we define "out-of-date", we say that an artifact is almost-out-
of-date if there is a draft which has it as a predecessor or if it references an artifact that is
almost-out-of-date. When beginning to edit or merge an artifact, the user is warned if the
artifact is almost-out-of-date. Thus, the branch in lineage is caught when starting a draft,
not when committing it.

When a new artifact becomes a successor of an old one, not only does the old one become
out-of-date, every configuration of which it is a member becomes out-of-date. It would clearly
not be satisfactory to require the user to manually edit each of these artifacts to change only
the references, and then only to change certain references to their successors. What happens

1There is presently no facility for committing artifacts with circular references. This would have to occur
in a single atomic transaction, but there are no particular difficulties in doing so.

B-10

The Artifacts System

instead is that starting a draft not only starts the draft the user intended, but also guarantees
that certain other drafts exist, automatically creating them, if necessary. The default rule is
that a draft will exist for every artifact that is up-to-date and will become almost-out-of-date
because of the new draft. (Provisions for non-default behavior are not discussed here.) A
draft that is automatically created is called a system draft; such a draft does not correspond
to any buffer and is determined by its predecessor artifacts, differing only in the references
to new drafts. A system draft may be "taken over" for further editing, if desired. When a
draft is committed, there is an option to "commit upward", i.e., to automatically commit
drafts that reference it, and so on, thus bringing into existence successor artifacts for all the
artifacts made out-of-date by the commit. One might worry that propagating the effects of
editing would consume tremendous amounts of storage. However, as we will see in section 4,
the storage required for two artifacts differing only in references is about what it is for one
of them alone. Treating them as two artifacts simplifies bookkeeping of derivatives, and

provides a simple mental model for tracking evolution.
An important consequence of the fact that the derivative of an artifact depends only upon

the configuration rooted at that artifact is that delivers may be scheduled automatically.
This is the default when a draft is committed, and may be overridden if desired. Each
job is scheduled and then run when its turn comes and when there is a machine on the
network capable of doing it. The automatic generation of system drafts, the command to
commit upward, and the automatic scheduling of derivers combine to make it easy to create
successors of an artifact and all the configurations of which it is part, and to obtain derivatives
for all the new artifacts—without ever explicitly invoking a single tool. One simply starts
the desired draft, makes the modifications, and commits it "upward".

While we have emphasized the implicit use of derivatives and their automatic generation,
it is also true that derivatives may be deleted and rederived under user control. There is
thus the possibility that a user may be told that a derivative is possible but doesn't currently
exist, for example, when trying to execute a program. In this case, the user has the option
of scheduling the job to obtain the derivative, after which the command can be re-issued.

4 Bodies and Handles

In this section, we discuss a simple technique for the solution of two problems. In section 2,
we noted that there is a need to connect the fine structure of program pieces (which we have
since seen is recorded in artifacts) with the coarse structure necessary to organize the pieces
(the references relation). In section 3, we observed the necessity to economically represent
two artifacts that differ only because they reference different artifacts.

From the user's point of view, an artifact has contents whose structure is determined by
the type of the artifact, and which has occasional references to other artifacts. From the
system's point of view, life is more complicated. In section 2 we discussed artifact pointers.
An artifact also has a body, which is the pointer to where the contents are stored. There is
a two-level storage of artifacts, connected by artifact handles.

• The contents of a body never contain an artifact pointer. Rather, at each place where
the user thinks there is a reference, there is actually an artifact handle. Handles may

B-ll

The Artifacts System

Users' view Extenders' view

Figure 1: Users' and Extenders' Views of an Artifact p

be thought of as being numbered consecutively: hi ... h^.

• The system associates with each artifact pointer a pair consisting of a body and a list
of artifact pointers (corresponding to the handles in the body).

(See figure 1.) Tools deal with an artifact's body and list of artifact pointers. If they
encounter a handle while processing the body, they refer to the pointer list to find the
pointer for the referenced artifact. Only type-specific tools know about the structure of
bodies, so only such tools can associate handles with artifact pointers. Notice that the
system knows nothing about the representation of handles—it never even sees any. A tool
is nearly as ignorant of artifact pointers—it uses them only to retrieve a body and pointer
list. A serendipitous aspect of recording the list of artifact, pointers with each artifact is that

this is exactly the references relation discussed earlier.
In addition to addressing the space problem mentioned in section 3, the body/handle

technique provides a type-independent means of committing system drafts, using a simple
generic "update function": given an artifact A0 and a pair Ai and A\ of artifacts, it produces
an artifact A'0 from A0, where all references to AA in A0 have been replaced by A\ in A'0.
This function works for artifacts of any type, because it never looks inside the body of the
artifact, which is the only place that type-dependent structure exists. Put differently, the
update function works at the coarse level.

In the current system, a body is usually a file name relative to a directory specified by
the type, but this is only because most of our initial tools have been file-based. With the
advent of persistent objectbases integrated with object-oriented languages, we hope that
the day will come when derivers can be written with the same mental model that the user
has—contents with references to other artifacts. It is not necessary to make an all-or-nothing
decision here. Because the body is interpreted on a type-by-type basis, we can have a system
in which some types have bodies that are file names, while others are references to objects
in POBi, and still others are references to objects in POB2, ...

B-12

The Artifacts System

5 Plexes

Up to this point in the discussion, we have been concentrating on artifacts, whose contents
are static. It is clear that underlying the implementation of artifacts, there must be some
mechanism that allows for objects with dynamic contents. Although the basic ideas in the
Artifacts System are independent of the technology used for objects with dynamic contents,
the usability of artifacts makes certain demands on the underlying mechanism. This section
describes the system that is used in the implementation both on its own terms and in
connection with the Artifacts System.

We use the term plex to describe an object whose contents are dynamic. The notion
generalizes that of "relation" as it is used in database terminology. A relation is a plex
whose state at any one time can be described by a set of tuples, all of the same length.
Plexes permit the state to take other forms, for example a list or a tree. (It is understood
that relations are logically sufficient; the reason for plexes is that sets of tuples may not be
natural and convenient for some purposes.) The essence of plexes is not the data structure
nor the operations that change state, but rather their ability to be viewed. Secondly, the
Plexes System is extensible: a new plex is defined merely by supplying a set of functions
having to do with viewing the plex. We will see that the Artifacts System is an extension of
the Plexes System.

A user views a plex with an editor, and to the extent allowed by the plex, also uses an
editor to change it. Because plexes may be large, viewing is controlled by a filter, which
limits the amount of the plex that the user sees on the screen. While a'filter controls what
a user sees, a formal controls how the information is presented on the screen. The details
of what a user sees when viewing a plex through a particular filter, arranged according to
a particular format, are of course dependent upon that plex, as are the details of how to
specify a filter or a format for the plex. However, the notions of filter and format apply when
viewing any plex.

The artifacts plex keeps track of all the artifacts in the system and various attributes at-
tached to them. This includes both information that is fundamental—type, body, references,
successors/predecessors, derivatives—as well as information that is for the user—name, the
person who created it, time of creation (this is the present set; it is subject to extension).
For performance reasons, the up-to-date attribute is represented directly, even though it can
be computed from the successors and references information.

The artifacts plex is the means by which a person locates a particular artifact; for
example, users generally organize their data so that there is no more than one element in
the set of artifacts that is up-to-date and has a particular name and type, or name and
owner. The interface for the Plexes System makes locating artifacts in this way no more
difficult than specifying a file name. It is also common to use the viewing machinery to
locate artifacts in other ways. For example, a user may wish to see all artifacts with a given
type that are up-to-date and created before a given time, or all artifacts with a given name,
regardless of whether they are up-to-date or what their type is. Such subsets of artifacts
may be viewed by specifying the appropriate filter.

An important feature of the Plexes System is the extent to which displayed information
is kept current. If the user is viewing the artifacts plex, say through a filter that allows

B-13

The Artifacts System

all users' artifacts provided they are up-to-date, and a format that sorts by time of creation,
then if any user commits an edit, the lines displaying the now out-of-date artifacts will
vanish, and a line displaying the new up-to-date artifact will appear in the proper place in
the display. This will provide the user suffering from file-system withdrawal the illusion of
looking at a directory listing that is continuously updated.

When we designed the Plexes System several years ago, we imagined that the idea of
maintaining active views on a repository was novel. In fact, there were already instances,
and the idea has apparently had multiple independent discoveries: Mercury [Lis88], FSD

[WA87], Chiron [TJ93]; there are no doubt others.

6 Present Status and Future Plans

The Artifacts and Plexes Systems were conceived with a graphics-based window system in
mind. The prototype implementation uses Epoch, which in turn is built on GNU EMACS
and X, which brings us part, but by no means all, of the way toward our ultimate vision
for a bit-mapped user interface. The communication mechanism is based on TCP. The core
of the system is written in C, which together with Epoch/EMACS, X, and TCP provides a
highly portable, freely distributed base; the Artifacts System is public domain.

There are currently around 20 types, for a variety of derivers: JATgX (used to produce
this paper); the C and UNIX types used as examples earlier; Common Lisp and (soon)
Ada, in much the same style as C; shellscripts, which allow integration of UNIX fUes-to-files

programs as derivers.
The Artifacts System is in daily use at Software Options, Inc., and has been distributed

to several other sites. It has been sufficiently robust to host its own continuing development
for several years. Our next project is to couple the Artifacts System with the Activity
Coordination System [Kar], so that management issues like bug-report tracking and system
release policies have a direct tie-in with the development project activities and data.

7 Conclusion

The Artifacts System provides its users with hypertext-like browsing and editing of complex
and evolving objects. These objects may be documents, software, hardware or mechanical de-
signs, ..., or like this paper, may combine objects of different kinds. Version/configuration
management is an integral part of the system. Tools are so well integrated that there is
minimal explicit tool invocation by the user. The coarse structure of the system provides
structural relations that connect an object with its historical relatives and with derivative
objects, rather than naming conventions and timestamp comparisons. As well as providing
information of direct interest to users, the coarse structure provides a basis for writing highly
incremental tools. The system supports the collaborative work of multiple users on a het-
erogeneous network that is treated as a single multifaceted resource, with the Plexes System
providing active views on network-wide project data. While the capabilities of the Artifacts
System are both powerful and flexible, it has a simple basis: the reference, derivative, and

successor/predecessor relations.

B-14

The Artifacts System

8 Bibliography
[Har87] W. Harrison. RPDE3: A framework for integrating too] fragments. IEEE Software,

4(6):46-56, 1987.

[Kar] Mike Karr. Technology for activity coordination. Also submitted to this conference.

[LisSS] Barbara Liskov. Communication in the mercury system. In Proceedings of the 21st
Annual Hawaii Conference on System Sciences, January 1988.

[LJ87] D. B. Leblang and R. P. Chase Jr. Parallel software configuration management in
a network environment. IEEE Software, 4(6):28-35, 1987.

[Tic85] W. F. Tichy. RCS—a system for version control. Software—Practice and Experience,

15(7):637-654, 19S5.

[TJ93] Richard N. Taylor and Gregory Johnson. Separations of concerns in the Chiron-1
user interface development and management system. In The First Collected Arcadia

Papers, pages 47-54, 1993.

[Towa] Judy G. Townley. E-L Users' Manual. Software Options, Inc., 22 Hilliard Street,
Cambridge MA 02138. Continuously updated.

[Towb] Judy G. Townley. Language Users' Manual. Software Options, Inc., 22 Hilliard
Street, Cambridge MA 0213S. Continuously updated.

[WA87] David G. Wile and Dennis G. Allard. Worlds: An organizing structure for object-
bases. SIGPlan Notices, 22(1), January 1987.

B-15

Appendix C

The Activity Coordination System

Mike Karr

September 2, 1993

Software Options, Inc.
22 Hilliard Street

Cambridge, Mass. 02138

This paper describes the Activity Coordination System, a process-centered system for col-
laborative work. It discusses the underlying mathematical formalism, which was specifically
developed for the purpose of describing and tracking distributed, communication-intensive
activities. The graph-based semantics encompasses the more familiar Petri nets, but has
several novel properties. In particular, it is possible to impose multiple hierarchies on the
same graph, so that, for example, the hierarchy with which an activity is described does not
have to be the one with which it is viewed.

The paper also discusses the user's (graphical) view of system, by describing a subset of
the currently implemented extensions, and the extender's view of the system, by explain-
ing the issues an extender must consider in developing new communication/coordination

patterns, which a user can then exploit at the graphical level.

Keywords: software process modeling, process execution, distributed processes, process for-

malisms

This work was supported in part with funds provided by NOSC, San Diego, CA 92152-5000
under contract N66001-88-C-7008 and in part by the AFSC, Rome Laboratory, Griffiss AFB,

NY 13441-5700 under contract F30602-91-C-0066.

C-l

The Activity Coordination System

Contents

1 Introduction C-3

2 Activity Graphs C-5
2.1 Structure C-6
2.2 Execution C-7
2.3 Graphical Condensation C-ll

2.3.1 Pinching Two Nodes C-ll
2.3.2 Shrinking Loops C-13

2.4 Projected Execution C-16
2.5 Summary C-18

3 Some Common Idioms C-20
3.1 Deleting Arcs and Nodes C-20
3.2 Subgraph Extraction C-22
3.3 Collapsing Parallel Arcs C-23
3.4 Products of Isomorphic Graphs C-25

4 User's View C-27
4.1 Protocols C-27
4.2 Nodes with Only send/receive Arcs C-28
4.3 Nodes with contend Arcs C-29
4.4 Composite Activity Descriptions C-30
4.5 Site Regions C-31

5 Extender's View C-33
5.1 Very Long Execution C-33
5.2 Serializability and Concurrency C-33
5.3 Instantiation C-35
5.4 Out-of-graph Functions, Sets, and Messages C-35
5.5 Tau Functions C-36

A The Universal Activity Description for a Protocol C-37

B Bibliography C-39

C-2

The Activity Coordination System

1 Introduction
This paper describes the Activity Coordination System, a process-centered system for col-
laborative work. It will discuss the underlying mathematical formalism, ways in which this
formalism supports various common idioms, the user's and extender's views of the system,

current status, and future plans.
The overriding requirement for an activity coordination system is that it be integrated

into the everyday activities of the people whose activities are being coordinated. It scarcely
needs mentioning that this requires a linguistic component capable of describing a wide
range of activities. A further consequence of this requirement is that the system must, at a
fundamental level, be distributed. Because many organizations are national or international,
"distributed" means not only on local area networks (where communication is continuously
available), but also on networks where communication is more sporadic (e.g., by occasional
dialup). In particular, the system cannot rely on any centralized execution component.

A third consequence is that the system must be extensible. We assume that the normal
activities of its users involve contact with computers, but we cannot assume much more than
that—different user communities will use different machines and different software. If a single
activity coordination system is to be of widespread use, it must be possible to connect it to
a variety of existing software: without such a connection, the use of that software remains
unaffected and thus uncoordinated. It is also clearly not desirable for a system to duplicate
functionality of existing software. Rather, the system might control access to such software,
might supply some of its input, and might look at its output to assist users in subsequent
parts of an activity. It is for making such connections that extensibility is a prerequisite—a
closed system simply will not be able to supply the necessary degree of integration.

If an activity coordination system is to be successfully integrated into day-to-day activi-
ties, it must be intuitive, i.e., easily understood by non-technical users. Thus, we are propos-
ing that an activity coordination system must have a linguistic component with which one
can express distributed communication and yet is easy to understand and use! We are aware
that this is a difficult goal, and it is only by restricting the linguistic component to the very
highest level that there is a chance of fulfilling it. While there are many factors involved in
making a system intuitive, we feel that a graphical approach is one of the most important.
We use the word "graphical" here in two ways: in the mathematical sense, as a structure
with nodes and arcs, and in the computer system sense, as a bit-mapped user interface.
The use of graphs to describe coordination is quite common: pert charts, organizational
charts, and communication networks are examples familiar to people who are not computer
experts. Extending the system with fundamentally new coordination paradigms may require
programming by experts, but it should be possible for non-experts to connect existing pieces
together to provide graphical high-level descriptions of an activity for its participants, who
could in turn understand "what is happening" in terms of these graphs, and moreover, could

interact with the system via such graphs.
Another requirement for the linguistic component of an activity coordination system is

that its constructs be composable and parameterizable. Without these classic concepts from
programming languages, it is impossible to have the modularity necessary for the reuse of

existing components and the building of large systems.

C-3

The Activity Coordination System

In addition to the general characteristics of distributedness, extensibility, and intuitive-
ness, there are several technical issues specific to the arena of activity coordination that
pervade the design of a system and thus the underlying formalism:

• user interface—How does a user find out what is going on, and what is to be done
next? How is this related to the description of the activity?

• history—How did the project get into its present state? How is the viewing of history
related to the user interface (which usually views the present)?

• simulation—How might things go from here?

• cutover—Descriptions of activities change while the activities themselves are under
way. How can this be managed?

• summarization—No single person wants (or may be allowed) to see all of the informa-
tion known to the activity coordination system. How can information be summarized
for presentation to the user or archiving as history?

C-4

The Activity Coordination System

2 Activity Graphs1

Before giving the semantics of activity graphs, it is necessary to define their structure. But
in understanding the structure, it is helpful to have a glimpse of the key semantic idea:

• to use an undirected graph with largely independent computations at the nodes (cor-

responding to "local" activities),

• coupled with interactions along the arcs (corresponding to the ways in which the ac-

tivities communicate).

The distributed computation resulting from an executing activity graph is a machine-based
microcosm of the real-world activities being coordinated. It guides the users, records their
actions, and presents information about the state of the world.

Several important features distinguish activity graphs from message-based schemes like
CSP (communicating sequential processes) [Hoa84]. First, the state of each of the compu-
tations is visible in a controlled way—the visibility of state provides the basis for presenting
information to the users of the system. Second, the use of "interactions" (which will be
explained in section 2.2) provides a better basis for activity coordination than mere message
passing, because it more succinctly constrains the behavior of the involved computations.
Further, limiting the interactions to those that take place in a specified graph guarantees a
simple, intuitive means of depicting patterns of communication.

Activity graphs also differ in important ways from Petri nets [Pet], which have also
been used as the basis of coordination systems. In fact, the activity graph formalism was
motivated by formal deficiencies that Petri nets have for this purpose. First, the semantics
of activity graphs are closed under simple graph operations, such as reducing a subgraph to a
node or collapsing two arcs that connect the same pair of nodes. The practical consequence
of this is that a summary view of an activity looks like, i.e., has the same semantics as, a
detailed view. A different way of saying this is that activity graphs allow one to trade off the
complexity of graph structure against the complexity of the state and activity (computation)
at a node in the graph structure. This is a prerequisite for scaling activity coordination to
large organizations, as we will discuss further in section 2.3.

Second, although Petri nets have been used successfully to model many concurrent sys-
tems, they are not ideally suited to distributed systems. The problem is the amount of
communication required by the firing rule. For example, consider the following fragment of
a Petri net, in which the round (state-bearing) nodes are scattered across the world:

How does the system decide which flat (transition) nodes to fire, given various combinations
of tokens on the round nodes? It is clear that with concurrently arriving tokens and in

xIn the original technical report [Kar90], the nomenclature was "transaction graphs", but this term has
an entirely different meaning in database theory, and its continued use would invite confusion.

C-5

The Activity Coordination System

the absence of a central interpreter, the decision to fire a node requires several rounds of
communication between it and its inputs. The fundamental interaction in activity graphs

requires much less communication (see section 5.2).
More generally, many real-world activities require joint action involving more than two

participants, but communication in a distributed system is point-to-point, almost by defini-
tion of "distributed". There are many types of multiparty joint action—the Petri net firing
rule, contention for a resource, bidding, voting, Byzantine generals, to name a few—and
some have interesting, non-trivial implementations. Our approach is to design and build a
system in which such actions can be implemented and installed by technically sophisticated
"extenders" and exploited by technically unsophisticated "users". Extenders program in an
ordinary procedural language such as C, and in fact can implement nodes that provide any
of the above joint actions, including Petri nets. Users "program" in a high-level graphical

language with node types tailor-made for their application.

2.1 Structure
To describe the structure of an activity graph, we start with the definition of a signature,

which is written a bit like a procedure header:

• (m :pi, ..., nk :pk)

- The rii are distinct symbols.

— The pi are protocols, drawn from a set P.

As we will see, such a signature describes a node, and each m : pi is associated with one of its
k adjacent arcs. The symbol m is the name of the arc relative to the node, and p; describes
behavior on the arc from that node's point of view. We will assume a "transposition"
operation which takes a protocol and produces a protocol for the other end of the arc:

• : P —> P, where pTT = p, for all p G P.

Perhaps the simplest example of a protocol set is one that directs an arc: P = {0,1}, where 0
means an incoming directed arc and 1 means an outgoing directed arc. In this case, 0T = 1.
Another example of a set of protocols can be constructed from a set of types U, where we

let P={UxU. This protocol is a pair of types, where (t{, *•) means that the node will make
visible a value of type U, and will see a value of type t'{ made visible by its neighbor along
that arc. In this example, we naturally have (i;,*-)T = (t'^U). As we will see in section 4.1,
protocols may also specify aspects of the behavior along the arc (as the name "protocol"
suggests), not just the types of values.

An activity graph is an ordinary undirected graph, except that it is allowed to have
"dangling arcs" (ones that do not attach to another node). Such a graph is labeled in the

following way:

• Each node is labeled with an activity description, consisting of several components,

one of which is its signature.

C-6

The Activity Coordination System

Each non-dangling arc is labeled with two names, one each from the signatures asso-
ciated with the nodes at its ends. Pictorially, the name appears near the node whose
activity description has the signature in which it appears.

Intuitively, the name indicates how communication on the arc affects the activity de-

scribed by d{.

• Each dangling arc is also labeled with two names, one from the signature of the activity
description on the node to which the arc is attached (this name appears near the node),
and another "graph-relative" name, appearing at the dangling end of the arc.

• At every node, each name in the signature of the activity description appears exactly

once as the "near" label of an incident arc.

• A graph-relative name appears on only one (dangling) arc.

• Let rai and n2 be the labels on a non-dangling arc, and let n; : pi appear in the
respective signatures. Then px = pi (equivalently, pj = p2). This is called the protocol

conformance rule.

The last rule here is analogous to a rule found in many ordinary programming languages
for type conformance between actual and formal parameters of a function. Continuing our
example of protocols as pairs of types, if pt = (M'), then the protocol conformance rule

says that t\ = t'2 and t[= t2.
We close this section by introducing some notation and a definition that will be used

throughout.

• Nodes will usually be denoted by the letter w, and arcs by the letter a; in each instance,

subscripts are common.

• If arc a is incident on the node it, the name on a near u is nu<a, the corresponding
protocol from the signature of the activity description on u is pu<a, and the opposite

end of a from u will be denoted u/a.

• If a is a dangling arc, then ua is the (unique) node upon which a is incident, and na is

the graph-relative name on a.

• The signature of a graph is defined to be (na : pUo,0)a, where a ranges over all dangling

arcs.

2.2 Execution

The first step in defining an "execution" is to describe another component of an activity

description d (in addition to its signature):

C-7

The Activity Coordination System

• An activity description d has an associated set of states Sd-

• In an activity graph, we shall use the convention that Su denotes Sd where d is the

label of u.

• The set of states for an activity graph is defined to be X u Su, where u ranges over the

nodes of the graph.

An execution of an activity graph, defined only when it has no dangling arcs, consists of
a sequence of states for the graph, constrained by rules given below. (See section 2.3 for
situations in which dangling arcs are allowed.) The rules involve not only states, but elements
of the following:

• V, a set of values that are seen along arcs.

There are two remaining components in an activity description, the first of which assigns
each element of the signature (intuitively, each arc of a node with this activity description)
two functions. The first, denoted <7;, maps an element of Sd to an element of V\ this is the
value that the node shows to its neighbor on that arc.

Pd,i : Sd —> V

The second function, denoted T;, formalizes what happens during an interaction. In essence,
a node can change the value it makes visible along one arc at a time, based on its own state
and its neighbors value on the arc. In conjunction with this operation, it can change its own
state. For reasons we discuss below, the state change is non-deterministic, i.e., rt- maps a
state and a value (that exposed by the neighbor) to a set of possible subsequent states.

Td,i : Sd xV —> 2Sd where for all s,v,s' € rd,i(s,v) and j ^ i : o-d,j(s) = o-dj{s')

Intuitively, r^; looks at the node's own state (in Sd) and the value (in V) exposed by the
neighbor along the ith arc, and comes up with a new state (an element of 2Sd). The condition
says that the state change can affect only the value along the arc where the interaction occurs.

The other component of an activity description corresponds to an out-of-graph state
change, i.e., one not involving an interaction. Out-of-graph state changes correspond either
to real world events like the passage of time, or to changes not modeled at a particular level

of graph structure.

• Let d have signature (n,- : pi)i. The component is a function:

Od ■ Sd —> 2Sd where for all s,s' E Od(s) and i: 0d,i(s) = o~d,i(s>)

The condition says that exposed values do not change without an interaction, i.e., an appli-

cation of Td,i for some i.
Before we can proceed to the definition of execution, there is one last bit of groundwork,

concerning how protocols play a role. The idea is that a protocol is a validation predicate
on the sequence of values seen along an arc. Since values seen along the arc can appear at

C-8

The Activity Coordination System

either end, we formalize the sequence as pairs ((/;, i>;));, where /; € {0,1}; fi intuitively says
which end the value u,- is exposed on. By convention, /,- = 0 means that v{ is exposed by a,-,
and thus /; = 1 means that u,- is seen by r;. Using S* to denote the set of all sequences of

elements of a set £', we require that:

• An element of P is a predicate on ({0,1} x V)*.

The spirit of activity graphs is that values are seen along arcs, not necessarily transmitted,
and in this spirit, an element of P is allowed to pass judgment only on the sequence of
changes to exposed values. This can be technically stated as follows:

• Let ((fi,Vi))i € ({0,1} x V)*, and suppose there are some h and i2 with /; ^ fa for
ii < i < «2, i-e., there is no change in the value seen at the fa end of the arc. Then
repeating fa , vn after changes at the fa end of the arc does not affect the value of the

protocol, or technically, every p £ P must satisfy:

P(({fi,Vi))i) & P(((fuVi))iA (Uii> *0»

In practice, we define the action of a protocol as a predicate only for reduced sequences,
by which we mean sequences with the property that if ix and i2 are successive indices

with the same f,, then v^ ^ V{2.

The action of p e P as a predicate must have a proper relationship with the transposition

operator on P:

• For all p e P and ((/,-,«,■)),•: p(((/;,v,-)),-) ^ PT(((1 ~ favi))l)

In our running example of a protocol as a pair of types (£o,*i), we would define (t0,h) to be
true of a sequence ((/,-,Uj)),- if vz has type tfi, for all i. The point of saying that an element
of P is a predicate on a sequence of seen values is that it can thus be used to specify the
communication pattern that must be obeyed along the arc, not merely the static properties

of individual values.
We shall use the convention that ru,a denotes rd,t-, where d is the label of node u, and a

is the ith arc incident upon u. .Similarly for au>a.

• Given a state of an activity graph, a subsequent state is one which differs at exactly

one node u, where the new state at u is an element of:

Ou(Su) U [JTUta(su, au/a,a(Su/a))
a

Here, su and su/a are states of nodes from the given graph state, and a ranges over

arcs incident upon u.

Finally, we can state the precise definition of execution: it is a sequence of graph states, in

which:

• Each state but the first is subsequent to the previous element in the sequence.

C-9

The Activity Coordination System

• On any arc, the values exposed along that arc satisfy the protocol on the arc.

Note that this definition implies that changes at nodes occur serializably—execution does
not allow the two nodes on an arc to change simultaneously, i.e., two new exposed values
cannot be based on two old exposed values.

We promised earlier some justification for the role of non-determinism. One reason is
that activity graphs are designed to help cope with reality, which is non-deterministic. We
will also see various technical conveniences of this non-determinism, such as providing an
answer to the following question: how do we know when execution of an activity graph is
finished? After all, the computational model here is quite distributed (as promised): there
is no obvious "exit node", and specifying one, and its behavior, would be artificial, beneath
the level of the rest of the above formulation. Rather, the fact that r and o specify a set of
states allows for a natural, distributed, termination condition.

0 = U{ou(su) U{jTu,a(su,au/aia(su/a

Obviously, an execution sequence stops once this condition holds. We shall see other technical
conveniences of non-determinism in later sections.

We will address implementation concerns in section 5, but we note here that an imple-
mentation of T does not actually produce a set of states; rather, it eventually picks one state
that is a member of the set produced by the theoretical r. Thus, the definition of r serves
as a specification for the implementation rather than a prescription. Similarly, we do not
propose literally implementing the predicate corresponding to an element of P. This too
serves as a specification.

In the previous section, we saw that an activity description had a signature, and that
there was a transposition operator on the protocols in signatures. These were necessary to
specify well-formedness of activity graphs. In this section, wTe added the following semantic
notions, necessary in the definition of execution.

• For activity description d, whose signature is (rii : p,-),-, there are also the following
components.

— A set of states Sd-

— A list of map pairs (cr^, r^,,:), where ad,i : Sd —* V reveals part of a state to a
neighbor and r^,,- : Sd x V —> 2sd corresponds to interactions along an arc.

— A map Od : Sd —> 2sd, corresponding to out-of-graph state changes.

• Each element of P acts as a predicate on values seen along an arc. The action as a
predicate is well-behaved with respect to transposition on P.

We close this section by emphasizing the distributedness of the computational model, i.e.,
its suitability to a truly distributed implementation. Rather than presuming an external
scheduler, two adjacent nodes racing to perform an interaction on their common arc can
decide between themselves who goes first. It may seem odd that when concurrency is the
goal, interactions around a node must occur one at a time, but this is only the way that

C-10

The Activity Coordination System

one says formally that interactions are serializabie, not that the implementation is required
to perform them serially. Moreover, this approach to the formalism has the advantage of
minimizing the machinery built into the system, and maximizing the flexibility one has in
making extensions, i.e., implementing functions specified by <r, r, and o. This extends even
to concepts that are often built into the semantics of a distributed system, like fairness in

scheduling.

2.3 Graphical Condensation

In this section, we will show that there is a natural way to define an activity description that
mimics the behavior of an activity graph. This technique of shifting complexity between
the graph structure and the activity descriptions has several important consequences. Most
obviously, it means that activity graphs can be specified hierarchically—one can place a node
in a graph that refers to an entire subgraph, much in the same manner that one writes a
subroutine and refers to it by name. The dangling arcs of the graph attach to the arcs that

previously were attached to the node.
Less obviously, graphical condensation is related to obtaining different views of an activ-

ity, in the following way. Given a subgraph of a graph, that subgraph may be collapsed to
a node as a way of summarization: a particular view of an activity may involve a particular
condensation of certain aspects of the graph structure. A second view may condense a dif-
ferent subgraph, perhaps partially overlapping the first view. Thus the same activity may
be viewed as occurring on quite different, not even hierarchically related, graphs. Both of
these aspects make it possible to manage large activity descriptions; the entire graph never

has to be seen fully expanded.
To be precise, given an activity graph G, we will define the induced activity description

dG from the components of the activity descriptions on the nodes of G and, of course,
from the connectivity of G. The dangling arcs of G will be in 1-1 correspondence with the
elements of the signature of dG. Suppose we form a graph G1 with no arcs and a single node
labeled with the activity description dG. The result we are going to prove is that G and G'
are semantical!]) equivalent, by which we mean their executions are in 1-1 correspondence.
The proof involves showing that in each of two simple graph reductions—pinching two nodes
together and shrinking a loop (an arc with both ends touching the same node)—it is possible
to produce an activity description for the new node in terms of the activity description of
the one or two (respectively) old nodes of the original graph. It is these technical results,
both the result and its proof, that back up the claim that it is possible to shift complexity
between graph structure and activity descriptions. They will also motivate some of the
technical details of the semantics of activity graphs.

2.3.1 Pinching Two Nodes

In this subsection we consider the induced activity description for the graphical operation of
"pinching" two nodes, i.e., replacing them with a single node, and attaching arcs that used to
be incident upon either node to the new node. In its simplest form, the graph transformation

is:

C-ll

The Activity Coordination System

On the left is an activity graph consisting of two unconnected nodes; on the right is an
activity graph consisting of a single node, having arcs corresponding to the arcs on the left,
i.e., labeled in the same way (with graph-relative and node-relative names).

We first consider the signature for the new activity description d0. Let (n^ : Pjij)ij, be
the signature for dj. We will assume that the sets of names are distinct, i.e., nnx ^ n2i2, for
any i\ and i2; if not, they may be renamed. Since we are trying to arrange that both graphs
appear the same on the outside, they at least have to have the same signature, which forces

the signature of d0 to be defined as:

("li : Pu, ■ ■ •, nih ■ Pik!, «21 : P21, ■ ■ ■ , n2k2 ■ P2k2)

Next, consider the set of states. If the two graphs behave the same, then in general we
would have to have to define Sdo to be Sdl x Sd2. Similarly, identical behavior requires:

11 w 4s.f / °i\As\) if* ^ ^
• *ä0A(suS2)) - \ad2t_kAs2) otherwise

,, v ,de(jrdlti(s1,v)x{s2} Hi < h
• rdoA{si,s2),v) - I {5i} x Tdi._ki{s^v) otherwise

• oda({sx,s2)) = odl(si) x {s2} U {sj} x od2(s2).

This effectively defines the desired activity description d0, which we will call d\ x d2.

Result 1 Suppose we have two nodes ux and u2 of an activity graph, with activity descrip-
tions d{, and that we obtain a new activity graph by pinching them into a single node u0

which we label with di x d2. Then the two graphs are semantically equivalent.

Proof The "semantic equivalence" can be made precise only by first being precise about
the correspondence between states. In the two graphs, the states are given by the following

respective sets:
X Su and (X Su) x SUo
u U^U\ ,u2

But SUo = SUl x <SU2, so there is a clear correspondence between states, which involves only
re-ordering and restructuring tuples.

(...s1...s2...)<r->((si,s2))

With this correspondence of states, it is clear from the definition of aUQ and the fact that
aUi is unchanged for i ^ 1 or 2, that at corresponding states, the same values are exposed
at the corresponding ends of all arcs.

C-12

The Activity Coordination System

The key to the argument is to look at the possible subsequent states of corresponding
states. For any subsequent map in the "before" graph which differs at a node other than ur

or tx2, there is trivially a subsequent map in the "after" graph differing at a node other than
«o, and vice versa. If the change occurs at uu changing 5, to s'{, there will be a subsequent
map for the "after" graph in which (sus2) is changed to (s'l,s2) or (sus'2). Conversely, any
change at u0 will be of this form, and thus there will be a corresponding subsequent state in
the "before" graph. In short, there is a 1-1 correspondence between subsequent states, and

hence a 1-1 correspondence between executions.

D
Define two activity descriptions to be equivalent, denoted =, if they have the same signature,
if there is a 1-1 correspondence between states, and if under this correspondence, r,cr and o

are all equivalent.

Result 2 d-L x d2 = d2 xch and (d1 x d2) x d3 = dt x (d2 x 4)

Proof In the first case, the correspondence between states is that between Sdl x $d2
and

Sd2 x Sdl, the details of the proof are not worth writing. In the second, we use associativity
of cartesian products to get correspondence of states, and give the proof for o.

0(d1xd2)>cds{{{suS2),S3))

= od,xd2{(sus2)) x {s3} U {(si,s2)} x od3(s3)

= (odl(3!) x {s2}U{si} xod2(s2)) x {s3}U{(si,s2)} x 0^(33)

= odl(si) x {s2} x {53} U {Sl} x od2{s2) x {s3} U {Sl} x {s2} x od3{s3)

Starting from odjX(d2Xd3), we get the same expression. Details for a and r are omitted.

D
To summarize this section, we have shown that given any activity graph G, we can construct
a graph semantically equivalent to G with a single node. The activity description for this

node is given by:

X du, where du denotes the activity description that G assigns to u
ueG

By the preceding result, the order in this product doesn't matter.

2.3.2 Shrinking Loops

While the techniques of the previous section condense an arbitrary activity graph to one
having only a single node, the activity description for that node is not what we want to call
"the" activity description for the graph. Because pinching nodes does not affect the set of
arcs, there will be one loop on the single node for every non-dangling arc in the original
graph. In this section, we consider the graph transformation of removing a loop.

C-13

The Activity Coordination System

The reason for the terminology "shrinking" is that while from the standpoint of only the
graph structure, it looks as if the loop is simply being removed, from the point of view of the
activity descriptions, the semantics for the loop is being pulled inside the node, i.e., turned
into an out-of-graph change of state.

Let d have signature (??.; : p;);. For convenience, we will assume that the loop has node-
relative names rii and n2, so that the signature for d! is (n,- : Pi)i>2. We naturally define Sdi
to be Sd, and carry over the definitions of adj

and rd,i for i > 2. The only non-trivial part
of the construction is that what were previously interactions along the loop must become
out-of-graph changes, as seen in:

• od>(s) = od(s)UTdil(s,adt2(s))UTdi2(s,aSii(s))

This completes the definition of d', which we denote by d — [1,2]; more generally we give the
pair of indices removed. We will also use the notation d — a when it is understood that the
indices arise from an arc a that is a loop at a node labeled by d.

Result 3 Suppose a node u of an activity graph is labeled by d and has a loop a, and that
we obtain a new activity graph by removing arc a at u and replacing the label with d — a.
Then the two graphs are semantically equivalent.

Proof Unlike the case in the previous subsection, here the sets of states are identical. For
subsequent states that differ at a node other than u, the correspondence is immediate, as
is the case of u when the state change is due to an interaction along an arc other then a.
The remaining state changes at u in the "before" graph are either out-of-graph changes, or
interactions along a, all of which correspond to out-of-graph changes at the corresponding
node of the "after" graph, and conversely. Thus there is a 1-1 correspondence in subsequent
states.
D

Not only does the order of shrinking arcs not matter, but the operation "commutes" with
pinching:

Result 4 Let ii, i2, i3 and i4 be distinct indices of the signature of an activity description
d. Then:

(d - [ii,i2]) - [i3, u] = {d- [i3, ^]) - [a'i, «2]

Result 5 Let ii,i2 be distinct indices of d\, and let d2 be an activity description. Then:

(di - [ii,i2]) xd2 = (di x d2) - [iXsi2]

(The notation here assumes that signature indices of d\ correspond to indices for the "<fi
part" of d\ x d2.)

C-14

The Activity Coordination System

Proof In both cases, the signatures are the same, as are the set of states and the actions of
a and T. In the first result, the expression for o for the left hand activity description expands

out to:

(od{s) U TdM{s,ad,i2(s)) U Tdti3{s,<jd>il{s))) U Tdii3(s,ad,it(s)) U Tdtii(s,ad,i3(s))

The right hand activity description expands out to a similar expression with ix and i2 ex-
changed with i3 and i4 respectively. So the result follows by commutativity and associativity

of "U".
In the second result, the computation is messier, but for completeness, here it is:

°(di-[n,*'2])xd2(('si>'s2))

= o^^^isr) x {s2} U {si} x od2{s2)

= (o^isi) U T^is^ad^isi)) U r^C^a^Osi))) x M U {sx} x od2(s2)

= orfl(si) x {32}U{3!} xod2(s2)Urc;],il(51,adl,i2(51)) x {s2}UTdui2(sU(7duil(s1)) x {s2}

= OdlXd2((sX,S2)) UTdlXd2,i]((Si,S2),<TdlXd2,i2((5i,S2)))UTdlX(i2,j2«Si,62),0-(f1xd2,i1«Si,S2»)

= OrflXd2_[i1,i2]((5i,52))

In the "=" step, we are using the fact that since ix and i2 are indices for dx, Tdl ,;(.si, u) x {s2} =

Trf1xd2,i«si,32),u), for i = ii and i2, and similarly for adui.
D
From the first of these results, we can use the notation d - {[ij,i'j]}j to mean d - [*i,«i] -
[i2li2] - .-., because the order doesn't matter. Similarly, if {a,-},- is a set of arcs, we can use

the notation d - {aj,- without ambiguity.
With these results, it is possible to condense an arbitrary activity graph G to a graph

with a single node and only dangling arcs, and having essentially the same execution as G.
The activity description on the single node, which we call the activity description induced

by G, is given by:
dG =f X du - {a G G | a is non-dangling}

In many respects, the ability to obtain an activity description that corresponds to a graph
dictated the technical details of the definition of an activity description. For example, sup-
pose that we had defined an activity description to allow simultaneous change of exposed
values. Then there would be a class of activity descriptions which could not be realized
as activity graphs. Or suppose that we had not allowed out-of-graph changes to the state.
Then activity graphs would not be closed under the shrinking of loops.

In summary of these first two subsections, we have seen that the definition of activity
descriptions and activity graphs is done in such a way that the complexity of an activity
graph can be traded off against the complexity of the state of its nodes. There is nothing
about the behavior of an activity description that is particularly different from the behavior
of an activity graph; in other words, there is no particular aspect of behavior that must be
put into a graph, or must not be put into a graph. This property enables the construction

of a layered system of activity descriptions with clean encapsulation.

C-15

The Activity Coordination System

2.4 Projected Execution

One often wants to view only part of the information that is necessary for the execution
of the activity graph as a whole. The goal of this section is to structure the selection of
information in such a way that a view makes sense on its own. The technical approach is to
require that the state changes seen in the view are actually an execution in an activity graph
that is related in some well-understood way to the activity graph being viewed. Thus, where
in the previous section we studied transformations with 1-1 correspondence in executions,
here we are interested in transformations which have the property that for every execution in
the original activity graph (the one being viewed), there is an execution in the transformed
activity graph (the view), but not necessarily vice-versa. That is, the set of executions in the
view contains (and may greatly exceed) those in the original graph. This is because of the loss
of information in the transformed graph, which causes an increase in the non-determinacy

of a, T and o.
The techniques of the previous section changed the graph structure, but maintained

semantic equivalence. Here, they keep the graph structure the same, and change only the
activity descriptions on nodes. Imagine two copies of the same graph structure (not activity

graphs, yet), one drawn in a plane directly above the other.

Turn each of these graphs into an activity graph by assigning an activity description to
each node. Further, assign a state to each node, where the states on a plane make up the
state of an execution going on in that plane. The bottom plane we will view as the detailed
execution, and the top plane as a view on the detailed execution—a "filter" through which
we look at the "real" execution. This view is formalized as a projection mapping the bottom
to the top plane, where this projection behaves "properly" (one might say homomorphically)
with respect to the functions a, r, and o.

The essence of the subject here is maps from one activity description to another. We will
denote such maps with II, and by abuse of notation, also use II for the map of constituent
parts of an activity description. A map II must have the following constituents:

• A map that takes signatures to signatures: (??.; : pt)i (—> (n8- : II,(p;))j

A map that takes a state to a state: II : Sd —> S] Ti(d)

C-16

The Activity Coordination System

• Maps for values seen along an arc: v t-> U{(v)

• Maps (functional) taking ad,i •-> Pn(d),hrd,i ^ Tn(d),nand °d ^ °n(d)

We are interested only in the subset of such maps, for which we use the term projections,
that have the properties given below. In stating these properties, we further abuse II by
applying it to subsets of Sd, by which we mean the subset of Sri(d) obtained by applying II

to elements of the given subset.

• For all s G Sd, Ui(ad,i(
s)) = °~n(d),i(tt{s))

• For all s G Sd,v G V: U(rdti(s,v)) C 7Tn(d),,-(n(s),II.-(u))

• For all s G Sd: U(od(v)) C on{d)(U(s))

The "C" in each of the last two conditions makes precise the ways in which 11(d) may lose

information present in d.
In addition to homomorphic behavior at each node, we need a similar condition for what

happens on an arc:

• Let I! be a projection of signatures, and let n0 and IIi be projections of values. We

say that n0 and IIi are consistent with II at p M for any sequence of values ((/,-,«,•)),•:

p(((/i,«i»i)=»n(p)(((/i,n/i(i;j)»i)

In other words, n0 and na project a legal sequence of values to a legal sequence in the

view.

This property is used in the definition of a projection of an activity graph G, which is a set
of projections IIU, one for each node of G, with the properties:

• Replacing the label du on node u with Ilu(du), for all u G G, results in an activity
graph, i.e., one in which the rule for signatures is met. (In other words, if ux and u2

are connected by arc a, and if Ui has protocol p, on a (so pj = p2), then II„1?a(p1) =

nU2,a(P2)0

• For every arc, the projections of the values at the ends of the arc are consistent with

the projection of the protocol on the arc.

Again overloading II, let 11(G) be a projection of an activity graph G, and for any state

{su}ueG for G:

• Let Ii({su}ueG) = {n„(su)}uGG

Finally, we need to define what it means to project an execution of a graph. A naive
definition would be that a projected execution is obtained by applying II to each state in the
execution sequence. This is almost the appropriate definition, but overlooks the situation in
which consecutive states of the detailed execution project to the same state—a possibility we
certainly want to allow, so that projections can reduce the number of steps in an execution

as well as summarize state.

C-17

The Activity Coordination System

• Let (s{)i be a sequence of states. We define n((s;),-) to be the sequence (n(s,--))j where
(ij)j is defined by:

i\ = 1 and ij+\ = the smallest i > ij such that II(s,-) ^ n(sj-)

This completes the set of definitions we need for the following result:

Result 6 Let G be an activity graph, and 11(G) a projection. Then II projects any execution
in G into an execution in 11(G).

Proof Let (s;); be an execution in G, and (SJ.)J its projection. We must prove that for
j > 1, n(sj-) is a subsequent state to H(sij_1). In G, we know that stj is a subsequent state
to s,- -_j, that the state change was localized at a node, and caused either by r or by o. Let
su be the state of u at Sj-._,. Then if the change was caused by r:

II.U(T„(5U, <7u/a,a(Su/"))) - rn(a),a(II„(su), Tiu/a^u/a,a{Su/a)))

— 7"n(a),a(n„,(5u), CTn(,4/a),o(nu/a)a(su/a)))

By Tn(u), we of course mean Tnu(du), where <i„ is the activity description that G places on
node u. Thus, II(SJ.) is subsequent to n(sj _j). The case for o is similar.

The other requirement for an execution is that the values along an arc satisfy the protocol.
This is true for the sequence of states seen in 11(G) because it holds for these in G, and by
the consistency requirement on the projections of values.
D
Whatever can be ascertained about executions in the view can be understood as a result
about the detailed execution. Even when using the view as an inspection device, the condi-
tion that it is a projection means that the viewer can understand what is and what might
happen next in a self-contained way—specifically, in terms of a, r, and o in the projections.

2.5 Summary

We have defined a graph-based scheme for the computational modeling and monitoring of
activities. The basic building block is an activity-description [activity description), which
describes "local" activity. An activity description governs how its instances can be connected
to other instances of activity descriptions by specifying a protocol for each neighbor. It also
governs the evolution of the state of an instance of the activity description: the parts of the
state that are revealed to neighbors, the rules for changing that part of a state, and the rule
for changing the part of the state not seen by any neighbor.

Structurally, an activity graph is a graph whose nodes are labeled with activity descrip-
tions. Arcs between nodes receive two protocols, one from the activity description on the
node at each end. There is a conformance rule requiring that the two protocols be the same,
up to a symmetry operation. Activity graphs are allowed to have dangling arcs, each of
which receives only one protocol. The set of protocols given by dangling arcs plays the same
role as the set of protocols specified by an activity description.

C-18

The Activity Coordination System

We defined the notion of an execution of activity graphs. This consists of execution steps
at each of the nodes, governed by the activity description on a node. At any step, a node
may change its state independently of its neighbors, or it may change its state in a way that
depends upon the part of a single neighbor's state made visible to it. The execution steps
are required to be serializable: adjacent nodes may race to perform an interaction along an
arc, but one or the other will go first. The sequence of values exposed along an arc must

obey the protocol on the arc.
It is important that the definition of execution not require any central component in

an implementation. We wish to support applications in which the nodes represent loosely
dependent activities, and in which the activities may be proceeding at distant sites. Thus the
formalism makes quite explicit exactly where the communication happens at each stage, and
it requires only point-to-point communication, so there is no need for a global communication

or locking mechanism.
Much of the discussion here has been toward the development of a calculus of operations

on activity graphs. The first part of this discussion showed how to preserve the execution
under a set of natural graph-theoretic transformations, while the second part left the graph
structure invariant and showed how to characterize summarization of execution.

The reader may be concerned that activity graphs as a formalism do not provide an
immediate basis for the construction of activity coordination programs by novices. In fact,
there is no claim to the contrary, and as we stated at the outset, our goal here is to provide
the intellectual basis for an activity coordination system. This basis must meet other criteria:
it must provide a coherent "mentality" for an eventual system, by providing concepts that
are applicable in its seemingly disparate parts. In chapter 5, we shall see how the somewhat
theoretical ideas developed here relate to real world aspects of an activity coordination
system, and in chapter 3 we develop several higher level activity descriptions and operations

on activity graphs.

C-19

The Activity Coordination System

3 Some Common Idioms

The activity graph formalism was deliberately designed to favor formal simplicity and com-
posability over the inclusion of many "features" at a fundamental level. The rationale is
that if the basic design is clean and powerful, the desired features can be programmed and
encapsulated. In the sections below, we consider common patterns of graph manipulation
that can be done using the fundamental operations described in section 2.3. The aim here
is not to be complete, but to demonstrate that a high-level system can indeed be built on
this foundation.

3.1 Deleting Arcs and Nodes

Unlike the basic graph operations previously discussed, equivalence-preserving transforma-
tions that delete graph structure require semantic conditions. For arcs, a sufficient condition
is that activity descriptions on the nodes at each end of the arc behave independently of

the value seen along the arc. To be more precise, we say that d ignores arc i0 & rdtio is
independent of its second argument, i.e., there is a function 0d : Sd -> 2Sd such that:

• Td<io(s,v) = 6d(s), for all s € Sd.

The fundamental transformation is on activity descriptions:

Let the activity description on the left be d with signature {m : />;),- and assume d ignores
i0; for convenience, that on the right will be d! with signature (n,- : £;);#„ and functions:

• crd',i and Td',i are the same as ad,i and Td,i, respectively, for i ^ i0.

• od>(s) = od(s) U0d(s)

Suppose that a graph has nodes ux and u2 joined by an arc o,0, and that each of ux and u2 has
an activity description that ignores a0. The operations to delete the arc may be expressed
as follows:

• Pinch the nodes at each end of the arc, and shrink a0 (now a loop), obtaining the
following functions for now node u0:

- c0>a((si,s2)) f°r a¥: ao carries over from o-;;a(.stj, where a was incident upon u,-.

- Similarly for TQ^S^ , s2),v).

- o((Sl,s2}) = o1(.s1)Uo2(.s2)UTl!ao(51,<72iao(.s2))Ur2iao(52,<7l!ao(.s1))

= 01(Si)U6l1(s1)U02(52)UÖ2(52)

C-20

The Activity Coordination System

The first equality comes from shrinking aQti and the second, from the assumption that

Ui ignores a0, for i = 1 and 2.

• Unpinch u0 to obtain u[and u'2 with activity descriptions d'-,j = 1 and 2, where:

- ad>.ta and Td/.j0 for a / a0 axe the same as adj,a and rd>)0, respectively.

- odi.(s) = 0^(5) Uöj.(s)

Thus u'j has the above-described transformation of dj.

The results for pinching and shrinking guarantee that the graph with the deleted arc has
executions in 1-1 correspondence with the original graph.

Why would anyone write an activity graph with a deletable arc? One probably would
not, at least not directly. The real utility of this transformation is in its combination with
projection—even though an activity description does not ignore i0, a projection might. Thus
projection not only simplifies states and shortens execution sequences, it can also be viewed
as simplifying the pattern of coordination. This is a formal property that corresponds to
real-world experience: at a gross level, certain activities may be described as independent,
while if one takes a closer look, it becomes clear that dependencies do exist.

For deleting a node, the condition is that its activity description has the following prop-

erty:

d is boring & its signature is empty and Od(s) = 0 for all s.

Let a node ux have a boring activity description. Then Ui can be deleted as follows:

• Pinch it! together with any other node u2, obtaining the following functions:

- ffd0((si,S2)) = tfrf2,i(S2)

- Tdo{(sUS2)) = M X Td2ti(s2,v)

- odo((sus2)) = odl(si) x {s2} U {sx} x od2{s2) = {Si} x od2(s2)

The first two items use the fact that ux has no incident arcs, and the last, the fact that

odl(s) = 0.

• Because di enters into no interaction that would change its state, and because odl (s) =
0, the initial state of ux remains forever unchanged, i.e., sx in the above equations is
a constant. Thus there is a 1-1 correspondence of states between u2 and u0, given by

S2 <_> (5l,52). Hence, we can map the state on u0 back to what it would have been
on u2, and revert to the original ad2,Td2, and 0^, and have a 1-1 correspondence in

execution.

In effect, no trace of ^ remains. Of course, an implementation would delete ux directly, and

not literally go through the steps that justify doing so.
As with ignoring an arc, one is not going to write boring activity descriptions on purpose;

their utility arises in connection with projection and other transformations. In the next
section we give an example that combines projection and deletion of both arcs and nodes.

C-21

The Activity Coordination System

3.2 Subgraph Extraction

The goal of this section is to "understand" a subgraph Go of a given graph G on its own
terms, where by "on its own terms" we mean that we wish to leave Go itself untouched, and
to view interactions along boundary arcs of Go as contributing to the non-determinism of
execution in Go- More formally, our strategy is to define a projection on G which is the
identity on nodes in Go- The question then is, what happens to nodes outside Go? We
first consider the special case in which such a node has only one arc, the other end of which
touches a node in Go, and has (n : p) as the signature for its activity description. In order
to make the projection independent of the graph outside Go, what we need is the universal
activity description for protocolp with name n, denoted dP:H. The definition is a bit technical,
but the idea is simple: dp<n always responds to a sequence of interactions in a legal way, but
is unpredictable up to the constraints imposed by p. The easy part is this:

• The signature for dp<n is (n : p).

• The other constituents depend only upon p, and will be denoted Sp, crp, TP, and op.

• op(s) = 0 for all s £ Sp.

The technicalities for the definitions of Sp,ap, and rp are in Appendix A, where it is shown
that there is a projection from d to dPy7l.

Generalizing the situation, suppose that a node u not in Go has activity description d
with signature (n; : pt);. By "i touches Go", we mean that the other end of the arc whose
u-relative name is rii touches a node in Go- The projection for u takes d to an activity
description that behaves on arc i like the universal activity description for pi if i touches Go,
and which otherwise ignores arc i. Formally:

def
n((nt- : pi)i) = (iii :

Pi if i touches Go
true otherwise 0

<-. def \y <->
<->n(d) = ^ Odi

i touches Go

--\a'd,i){\sj}j touches G0 j '
def f o"Pt.(sj) if i touches Go

0 (or any other arbitrary fixed value) otherwise

- TTfV V/c \ „1 def J X J touches Go 'i ,, • } if Z touches G0 • U[Td,i){\Sj)j touchesG0i
u) = \ \ Sj otherwise

0 otherwise

def
• U(od)((Sj)j touches Go) = 0

We omit the proof that there is a projection from d to the activity description with these
components.

Now let us examine the result of this projection. We first observe that an arc between
two nodes not in Go is ignored by both nodes, and hence may be deleted, by the previous
section. After deleting all the arcs, any nodes that are not adjacent to a node in Go will be

C-22

The Activity Coordination System

boring, and thus may be deleted, again by the previous section. Finally, any remaining node
not in Go will have arcs to one or more nodes in G0. If the number of arcs is greater than
1, it may be unpinched1 until all nodes not in G0 have a single arc that touches a node in
G0. This is the last step of the construction—we now have a graph that embeds G0 but is

completely independent of the graph structure of G not in G0.
The purpose of pursuing this is example is to offer evidence of the power of the pinching,

shrinking and projection operations. Starting with an informal notion of wanting to "under-
stand" a subgraph of a graph, the exercise of formalizing this in terms of the operations of
sections 2.3 and 2.4 leads inevitably to the necessity of constructing an activity description
that behaves as the most general participant in a protocol, which we called the universal
activity description for a protocol. If we want merely to look at a subgraph of a graph, it
would be overkill to invoke all this machinery. However, if we want to simulate or analyze a
subgraph, or if we want to test and debug an activity protocol with a non-empty signature,
an implemented version of dp.n is exactly what we need. So the seemingly technical device
that we used to formalize extracting a subgraph from a graph turns out to have important

connections to reality.

3.3 Collapsing Parallel Arcs

Section 2.3 showed how to condense any subgraph of a graph to a single node uQ without
loops. Consider a node m outside the subgraph, which in the original graph had arcs
to distinct nodes in the subgraph. In the transformed graph, the nodes u0 and ux will be
connected by several arcs. Arcs that are incident on the same pair of nodes are called parallel;
the purpose of this section is to describe how parallel arcs can be collapsed to a single arc,
and the activity descriptions on the nodes adjusted so that there is still a 1-1 correspondence
in executions. The essence of the transformation is on an activity description: .y
The heavy arc on the right is obtained by collapsing the two arcs near each other on the left.
Let the activity description on the left be d with signature (n{ : p,);. For convenience, let n0

be the name for the heavy arc. (Choose n0 ^ ra,-,i > 2.) The signature for the new activity
description d! will be (n0 : po,n3 : p3, • • • ,nk ■ Pk), where we have not yet defined p0. Before
doing so, we note that d' inherits the set of states from d, the definitions of adii and rdii for

i > 2, and the definition of o,/.
The idea is that a value seen along the collapsed arc consists of the pair of values seen

along the two uncollapsed arcs. There are two technical assumptions that we must make:
the first is that V x V C V, i.e., if vuv2 € V, then (vuv2) € V. The second has to do

lrThe pinching and shrinking transformations are equivalences, and may be applied in either direction; by
"un-", we mean in the direction opposite to the one stated.

C-23

The Activity Coordination System

with a corresponding operation on protocols. Given pi,p2 £ P, we assume that there is a
Pi x p2 G P with the following action as a predicate:

• (Pi x P2)(((/i, Vi))i) <!$■ every u; can be written in the form (vn, vi2), and Pj(((fu %));)
holds for j' = 1 and 2.

We note that (px x p2)
T = v\ X pif, i.e., they have the same action as predicates.

Naturally, we let p0 = p± x p2, thus completing the signature for d', and to complete the
definition of the entire activity description:

• <7d',o(s) = (crd,i{s),(7d<2(s))

• Td;o(s,{vi,V2)) = Tdii(s,V!) U Tdi2(s,V2)

• od>(s) = od(s)

Result 7 Let u\ and u2 be nodes in a graph with activity descriptions d\ and d2, and
suppose that ax and a2 are parallel arcs adjoining them; for convenience, assume that a,- is
the il arc on each node. Obtain a new graph by collapsing ax and a2 to a single arc a0,
and by replacing the activity description on u; by of-, as outlined above. Then there is a 1-1
correspondence between the execution of the two graphs.

Proof We can view this as a sequence of elementary transformations:

• Pinch ui and u2, then shrink at and a2, now loops, obtaining the following functions
for the new node u0.

~ cro,a({si-,s2}) for a ^ a-[,a2 carries over from <7;,a(.s).

- Similarly for T0,a((si, s2),v).

~ o0((sus2)) = Oi(Si) x {s2} U {si} x o2(52)

U Tii0l(51,<72l0l(s2)) X {.S2} U {Sj} X T2,01(52,<ri,oi(5l))
U 71,^(5!, <72la2(s2)) X {.S2} U {^j} X T2>tt2 (s2, Oi,aa(Si))

= Oi(si) X {s2}U{5i} X 02(52)
U Tdi0(51,(T^iao({51,52))) X {52}

U {5i} xrd/iO0(s2,^/iO0((51,s2»)

• Unshrink a new arc «0 and then unpinch to get nodes u'i,u'2 with:

„ lB \ - i aiAsi) if a ^ «i>ö2
(ö-d'.aol-Si) 11 a = 00

- Similarly for r„'a

- oui.(si) = o(si)

C-24

The Activity Coordination System

The protocol pi x p2 has clearly been constructed to be valid for the communication on a0.

a
Thus, parallel arcs can always be collapsed, assuming that V x V C V and that P is closed

under the product operations discussed above.
We state without proof several relationships that collapsing arcs has with other opera-

tions. First, shrinking and collapsing commute:

Result 8 Let ?'i,«i, «2,^2 be distinct indices of the signature of activity description d, and
form d' by collapsing ii and z2, and i\ and i'2, calling the result indices i0 and i'0. Then:

j-{[?1,z;],h,z'2]} = fi'-[io,g

D
Result 9 Let iu i2, and i3 be distinct indices of the signature of activity description d, form
d<i,2),3 by collapsing ix and i2, and the resulting dangling arc with i3, and form ^(2,3) by
collapsing i2 and i3, and then collapsing ii with the resulting dangling arc. Then:

^(1,2),3 — ^1,(2,3}

D

At the beginning of this section, we remarked that collapsing parallel arcs is useful in tidying
up a graph which has had a subgraph condensed to a node. In the next section, we shall see

another use for this graph transformation.

3.4 Products of Isomorphic Graphs

A common pattern of activity is the assignment of essentially the same task to several persons,
for example, all members of a committee are to receive a report and submit a review by a
certain date. It is quite natural to describe what a committee member does from the point
of view of one member; from the point of view of the person who assigns the task to the
committee and who collects the reviews, it is natural to look at one graph that summarizes
the behavior of all the members of the committee.

The notion of projected execution (section 2.4) supplies precisely the right technique for
obtaining from the single graph, the view that is specific to a particular committee member.
What is needed is a way to obtain the single activity graph that captures the behavior of
a set of participants from a graph that specifies the behavior of a single participant, and
does so in such a way that it is possible to project the appropriate view for each particular

participant.
As the title of this section suggests, we will formalize the notion of "essentially the same

task" to mean that the activity descriptions are based on isomorphic graphs. We do not
require that the activity descriptions on corresponding nodes be in any way related, but we
will assume that arcs which are paired by the isomorphism have the same names—this is
not a real restriction, since renaming is always possible. The details:

• Let G\ and G2 be isomorphic activity graphs. This product, denoted G\ x G2, is

constructed as follows:

C-25

The Activity Coordination System

- Pinch each pair of nodes that is paired by the isomorphism.

- For each pair of dangling arcs paired by the isomorphism, transform the activity

description on the node as described in section 3.3.

- For each pair of non-dangling arcs paired by the isomorphism, collapse the arcs

as described later in the same section.

- Let the signature of G; be (n, : pi3)3\ the signature of Gx x G2 is evidently given

by (rij : pxj x p2j)j.

We state without proof several desirable properties of this construction. The first says that
the product is associative and commutative, so that we can write (?i x G2 x G3 without
ambiguity, and similarly X;e/G;, where I is an index set. Further, there is an identity

element, so the latter makes sense even if / = 0.

Result 10 Let Gi,G2,G3 all have isomorphic graph structure. Define 1G to have the same
graph structure, where the protocol on a vertex is the boring protocol with the appropriate

signature. Then:

GxxG2 = G2 x Gx Gx x (G2 x G3) = (Gx x G2) x G3 G; xlG = G;

a
Product and projection work in the way one expects:

Result 11 Let GUG2 be activity graphs such that Gx x G2 is defined. Let:

• Hi(nj : pxj x p2j)j = {n3 : pi3)i

• 11;(di x d2) = di

• ni((si,s2)) = si

• H.i((vx,v2)) = v{

Then n,-(Gj x G2) ^ Gi, for % = 1 and 2.
D
Finally, there is a natural connection between graphical collapse and products of protocols

and graphs.

Result 12 Let Gi, G2 be as above, and for any G, let dG be the interaction protocol obtained

by collapsing G to a single vertex. Then:

dcüxG2 — dd x da2

D

C-26

The Activity Coordination System

4 User's View
We have this far discussed abstract properties of activity descriptions. A usable system
must of course have concrete, implemented activity descriptions. These ultimately rest
on a set of primitive activity descriptions, each of which supplies, via parameterization, a
family of activity descriptions with related semantics. In discussing the formalism, activity
descriptions were represented by labels inside round nodes; in the implementation, a user
sees a distinctive node shape representing a primitive activity description and node contents
indicating the parameter; similarly, the name on the end of an arc in the formalism is, in
what the user sees, implicit in where the arc is connected to the node. It turns out that there
is nearly a 1-1 correspondence between the node types that a user sees and the primitive
parameterized activity descriptions. (When there is this correspondence, for brevity's sake
we will use the term "node type" to refer to both, and note the exceptions.)

The most important way of extending the system is by the addition of a new primitive
activity descriptions, and most subsections we discuss the currently implemented set. The
first subsection discusses the protocols used by this set, and the last two subsections discuss
composite activity descriptions and notation for distributing activity descriptions.

4.1 Protocols
There are only two essentially different kinds of protocols currently used. One kind describes
arcs that may be viewed as carrying a value from one node to another. These protocols come
in the complementary pairs send(i) and receive^), where t is the type of values (not to
be confused with node type) that move on the arc. Arcs with these protocols are drawn as
directed arcs, where the barb is at the end that is formally labeled with receive^). The t
is implicit, so no protocol label actually appears. The intuitive image is that the node at the
send(i) end of the arc (away from the barb) places a value on the arc, thereby enabling it.
Once an arc is enabled, the node "sending" the value cannot retract it and cannot place an-
other value on the arc until receipt of the value is acknowledged by the node at the receive^)
end. After seeing the acknowledgment, the sending node disables its arc and, upon seeing
this, the receiving node indicates that it is ready, and the cycle can begin again. Thus, the
values exposed at the send end of an arc alternate between v and "disable", and the values
exposed at the receive end of the arc alternate between "ready" and "acknowledge".

To relate this more closely to the formalism, the values exposed at the send end of an arc
alternate between the enabling value (l,v) (where v is the value being sent) and the disabling
value (0). The values exposed at the receive end of the arc alternate between the ready value
0 and the acknowledge value 1. The technical meaning of the send(i)/receive(i) protocol
pair is a predicate on ({0,1} x V)* which is true for sequences that alternate exposing values
at ends of the arc, and at each end alternate as described above. In other words, these
sequences have the form (where the send end of the arc is 0 and the receive end is 1):

...,(o,(i,^)),(i,i)(o,(o)),(i,o),(o,(i,^+1)),...

The other kind of protocol, called contend, is self-complementary. Arcs with this protocol
are drawn undirected. They denote a contention between two nodes and are used in cases

C-27

x y z
i, j <- f (x, y, z)
a, b <- g(x, j)

h(i, b)

The Activity Coordination System

where communication may be initiated at either end.

4.2 Nodes with Only send/receive Arcs

\ y In an activity graph, a node of type procedure-based is represented as a
rectangle with some text, as at the left. The semantics are that values
arrive on incoming arcs in waves; new values are computed from these
input values, and values are sent along the output arcs, as indicated by

-j 1 ■ the expressions that label them. The parameter is a tuple consisting
j | of the number of input arcs, the number of output arcs, the procedure

(represented as an expression tree), and for each output arc, an indication of whether it is
initially enabled, and if it is, the value being sent.1

In many situations the only significance of the value on the arc is the fact that it is
enabled. Such arcs can be viewed as transmitting values of type none, for which there is only
one value. A value of type none can be transmitted from a procedure-based node simply
by leaving its label blank. Similarly, a blank label on an input arc means that, regardless
of type, the value on the incoming arc is ignored; however, the arc's role in synchronization
remains. Thus, a procedure-based node with blank labels on all input arcs, blank labels on
all output arcs, and no intervening expression lines acts as a synchronizer—it waits for an
input wave, then sends an output wave, waits for another input wave, and so on. A node
with type synchronizer is a graphical abbreviation for just such a procedure-based node.

(It uses the same primitive activity description as a procedure-based node.) Graph-
ically, the node is a "•" (as if it were an extremely condensed rectangle) so it can't
really be seen as such in a graph. The barbs on input arcs to a synchronizer node
are omitted, because their presence would be too messy graphically. An example

is in the inset, where the two curved arcs converge on the straight arc.
When connecting arcs to a synchronizer node, it is not necessary to specify whether it

is a send or receive arc. Arcs that connect to a procedure-based node (or other similar
nodes that we will discuss below) have their orientation fixed by where they connect to that
node. The only even slightly ambiguous arcs go from synchronizer node to synchronizer
node. Instantiation uses a simple graph-based algorithm to determine whether there exists
a unique orientation for such arcs subject to the constraint that every synchronizer node has
at least one input and at least one output arc. If so, it uses that orientation; if not, it reports
an error to the user.

Closely related to the procedure-based node types are initialize and terminate. An ini-
tialize node differs from a procedure-based node with no inputs in that the former produces

• ■ ■ , , only a single wave of outputs, while the latter
j j f can produce any number of waves. A termi

b«-g(2, 3)
a b

J V x ^ J z nate node differs from a procedure-based node
t \ la, b<- f (x, y, z) J
 with no outputs m that the former retains the

values in its state and blocks further input, while the latter clears out values and will accept
any number of input waves.

1In most cases, an output arc is not initially enabled. However, a cycle of send/receive arcs through
procedure-based nodes must, have an enabled arc, or execution is deadlocked.

C-28

The Activity Coordination System

Another node type having only send/receive arcs is merge. A merge node is parameter-
Yized by the number of input and the number of output arcs. It takes a value arriving

on any input arc as soon as it arrives and sends it along all its output arcs. It does
not require input to come in waves and will take arbitrarily many consecutive values
from a single arc, but it will not take two consecutive values from a single arc, unless

no values arrive on other arcs.

4.3 Nodes with contend Arcs

A user-interaction node is responsible for displaying values to users and accepting user
input. Like a procedure-based node, a user-interaction node has input arcs and output arcs,
ill I responds to waves of inputs, and produces waves of

T T T L_— output. The crucial difference is the period between
\ user dlSplaYL j »hUeTlö" (the receipt of a wave of inputs and sending a wave
/ integer \ / string V Q£ outputs, during which time the node is said to be

\' j { enabled. During this time there are three values of

interest: the user, the value being displayed, and the type that the user is expected to input.
These values may arrive on arcs or may be specified by expressions in the node. This example
shows only two possibilities—in both, the user arrives on an arc and the type is specified by
a (constant) expression (on an output arc), while on the left the display arrives on an arc and
on the right it is specified by the expression "hello". When a node is enabled, it notifies the
user, who responds with a value of the desired type, which is then transmitted along the arc
labeled by the type. Note the middle incoming arc on the left node and the right outgoing
arc on the right node. These are called synchronization arcs, because they transmit only
none values, i.e., they behave as for a synchronizer node. Such arcs are distinguished by the

fact that they connect to unlabeled places on the node.
A user-interaction node, unlike a procedure-based node, may have exclusion arcs, i.e.,

ones whose protocols are contend (represented in the above example by the horizontal arc
connecting the nodes). The rule is that if both nodes are enabled, input will be accepted
only from one—input at one node will disable the other node and, if there is a race, will
resolve it. Note that widely separated users may each attempt an input, not knowing what
the other is doing. If they each hit the "enter" key sufficiently close in time, one of their
inputs will be ignored. In general, a user-interaction node may have exclusion arcs connected
to any number of other nodes; in a race, the nodes decide that one and only one of the nodes

successfully accepts the input, i.e., produces an output wave.
A timer node permits activity descriptions to interact with real time. Like a user-

interaction node, a timer node alternates between being en-
abled and disabled, but when it is enabled, there is only one I

31
lO[\ ..reSpond" f value of interest: the time at which it will "go off", i.e., send
V\| / any \ a wave of outputs. (On a timer node, all output arcs are syn-

~\ chronization arcs.) As with the values for a user-interaction

node, the time can come in on an arc or be specified by an expression. In the example, the
time expression is t and the user expression is u; both t and u are presumably parameters
in the activity description of which this might be a part. The boxes around "t" and V

C-29

The Activity Coordination System

indicate that these are expressions, to which no arc can be attached, as opposed to the un-
boxed parameter "user" in the previous example, which indicates that the user value comes
in along the arc attached to this part of the node.

Like a user-interaction node, a timer node can also have exclusion arcs. If the arc shown
had continued undashed all the way to the user-interaction node, it would specify the sym-
metric mutual exclusion of the timer going off and the user responding to the user-interaction
node. From the point of view of the user-interaction node, the dashed arc is called an inbound-
exclusion arc, because the timer node can disable the user-interaction node even though the
user-interaction node cannot disable the timer node. As an example that makes good use
of inbound-exclusion arcs, consider several user-interaction nodes that have contend arcs to
a timer node that are inbound-exclusion arcs from the point of view of the user-interaction
nodes. This allows any subset of them to accept inputs without disabling the timer; when
time runs out, the timer will disable the rest. Timer nodes may also have inbound-exclusion
arcs.

The user-interaction and timer nodes are semantically quite similar, differing only in that
when enabled, one responds to the passage of time and the other to user input. (Both of these
correspond to out-of-graph state changes in the activity graph formalism.) The similarity is
captured in the implementation, in that they both use the same primitive activity description,
pbx, meaning "procedure-based with exclusion". The parameterization is too complicated for
this level of presentation, but the crucial aspect is that where a procedure-based node has an
expression, a pbx node has three expressions, one to enable the node, one to handle normal
arrival of the disabling event (user input or passage of time), and one to clean up after begin
disabled by a contention arc. Thus, the addition of similar, seemingly complicated types of
node, is in fact no more difficult then writing a procedure for a procedure-based node.

The only remaining node type with contend arcs has only this kind of arc. Its role is
simply to pass along exclusion requests and is thus called
an exclusion node. The graph in the inset is equivalent
to one in which the exclusion (circle) node has been re-
moved and the remaining nodes are connected pairwise by
contend arcs. If one of the original arcs were an inbound-
exclusion arc to a user-interaction or timer node, then all

of the pairwise contend arcs would be inbound-exclusion arcs to that node.

4.4 Composite Activity Descriptions

A condensation node, denoted by an ellipse, does not correspond to a primitive activity
description; rather, it allows one activity description to refer to another activity description
that has been specified by a graph, in the spirit of section 2.3. The following example
illustrates the definition of a composite activity description (overall-task) that refers to
several composite activity descriptions (design-task, reviewer-task, and monitor) defined
elsewhere.

C-30

The Activity Coordination System

overall-task(manager:person, designerrperson, reviewer:person,
design-date:time, review-date:time)

design-task(designer)

finish done

start

review-task(reviewer)
done

Because overall-task has no dangling arcs, it can be executed, at which time the param-
eters (manager, designer, etc.) must be specified. The activity descriptions mentioned in
the condensation nodes all have dangling arcs, which are connected as indicated.

As a further example, we provide a plausible implementation of the monitor activity.
The idea is that a timer is loaded with the initial deadline. If this timer goes off, it does
not affect the monitored task (the timer has an inbound-exclusion arc), it merely alerts
the manager (through the user-interaction node), at which point, a new deadline may be

specified.

monitor(who:person, when:time, what:string)

I when 1

done-

The dangling arc with label done corresponds to the same label in the elliptical condensation

node.

4.5 Site Regions

This section is about multisite instantiation, not node types. One of the arguments to
instantiation is the default site. All nodes are instantiated at this site, unless the activity
description indicates otherwise. This is done by enclosing the subgraph to be instantiated

at another site within a site region, an example of which is:

C-31

The Activity Coordination System

coordinate(sitel:site, site2:site)

taskl() link

sitel

link task2()

site2

In this example, none of the graph actually runs at the default site.

C-32

The Activity Coordination System

5 Extender's View
An extender must necessarily have a deeper view of a system than the ordinary user. The
first two sections below describe two aspects of the implementation that an extender must be
aware of: the "long execution" facility within which nodes run, and how the implementation
achieves concurrency in the presence of serializability semantics. The remaining sections
discuss how the mathematical functions a, T, and o specify the functions that must actually

be implemented.

5.1 Very Long Execution

Real-world activities continue for months or years, and consequently so must the instanti-
ations that track them. For this purpose, the Activity Coordination System uses a "very
long execution" facility [Kar87]. This facility provides activations, an analogue to operating
system processes, but which survive machine crashes. Activations can send one another
messages, even when they are at different sites on a wide-area net. Messages can also arrive
from other sources, such as a timer or a process interacting with a user. When an activation
is waiting fcr messages to arrive, or asleep for short, it exists solely in persistent memory.
When a message arrives, an operating system process is spawned. This process reads in the
state of the activation that was stored as it went to sleep and then begins receiving messages,
starting with the one that woke it up. When no messages have arrived for a sufficiently long
interval (e.g., a minute), the activation stores its new state and goes back to sleep.

5.2 Serializability and Concurrency

We have seen that there are strong mathematical reasons, based on practical system con-
siderations, that a node be able to change its exposed value on only one arc at a time, and
that it can do so with a secure knowledge of the value exposed at the other end of the arc.
This mathematical model suggests that communication along an arc is instantaneous, while
a goal of the implementation is to provide coordination over wide-area networks, possibly
using email. The slowness of real-world communication gives rise to two problems—how
does the system resolve races between two nodes, each of which wants to change the exposed
value on a shared arc, and how can the slow communication on several arcs be overlapped?

We first describe the algorithm to resolve races. Consider two nodes connected by an arc
yet separated by a time-consuming communication path. The graph instantiation mechanism
obtains from the activity description in each node the initial value exposed on each arc and
sends both this value and its address—network address, instantiation id, node within the
instantiation, and arc on the node—to the other end of the arc. Initially, then, each node has
a local copy of the value exposed on the other end of the arc, or at least, the most recently
received such value; this invariant is maintained throughout execution, as we will see. The
instantiation mechanism also tags one end of the arc with 1 and the other with 0, for reasons

that will become apparent.
Changing the exposed value on an arc is a two step process. A node first proposes a new

value, based on its local copy of the value at the other end. If the proposal is confirmed, it

C-33

The Activity Coordination System

proceeds with the state change, and otherwise, not. To propose a new value, a node sends a
"change" message, consisting of the new value and a random bit, and waits. When a node
receives a change message on an arc, there are two cases of interest: either it is waiting for
a response to a change message sent out over this arc, or not. In the latter case, the node
simply sends an acknowledgment, and records the received value as the new local copy. The
former case indicates a race—the change messages crossed in the mail, and to understand
the algorithm, it is useful to visualize each node performing the steps jointly. Each node
computes the exclusive-or of the random bit it sent, the random bit it received, and the tag
on its end of the arc; one node gets 0 and the other gets 1, so each "knows" what will happen
at the other. The node that gets 0 views this as denying its proposed change and the node
that gets 1 views this as confirming the proposed change, and treats the change message
as an acknowledgment, so that no further messages need to be sent. Thus, each successful
change of an exposed value requires only two message, whether or not there is a race.

We now discuss the use of concurrency. The issue is the wait between sending a change
message and receiving an acknowledgment. While this wait is unavoidable, it would be
desirable to overlap the waits on different arcs as much as possible. The problem in doing
so is the unpredictability of whether the proposed changes will be confirmed, and if so, the
order in which to make state changes. For example, suppose a node in state so concurrently
proposes changes to arcs a\ and a-i. Let us first consider the case in which both changes are
confirmed. The weakest condition that will satisfy the serializability rule is that for some
ordering of the arcs, i.e.:

• 3(i,j>) £ {(1,2), (2,1)}: Let s; be the state that exposes the value proposed for a,-.
Then the values proposed for a,j in states so and st- must be the same.

In generalizing this to n concurrent changes, there are n! possible orders to consider, and
consideration would have to wait until all concurrently proposed changes are confirmed or
denied. Thus an implementation based on this observation is infeasible.

To circumvent the problem of batching concurrently proposed changes, let us suppose
that we use the strategy that a state change takes effect as soon as the proposed value is
confirmed. This makes the algorithm that handles messages and state changes simple, but
requires a stronger condition on state changes if it is to be correct: change "3" to "V" in
the above condition. In generalizing this to n concurrent changes, there are still n\ possible
orders to consider, but these need to be considered only in proofs or run-time checks.

This brings us closer to the idea on which the implementation is based, but there is one
more issue to consider. In the above description of the algorithm, we glossed over exactly
what it meant to "proceed with the state change". Because state changes can occur in any
order, the state seen when the interaction is confirmed may be different from what it was
when the value was first proposed. It is thus preferable to describe the state that holds
after confirmation not directly by a new state value, but indirectly by a delta that is used to
obtain a new state from an old one. For example, a delta may say "increment the counter"
rather than "the new value of the counter is 3". Technically, a proposed change is a triple
consisting of an arc, the new exposed value for the arc, and a delta. At any time in a node's
execution, there will a set of proposed changes, with no two triples having the same arc. The

C-34

The Activity Coordination System

following condition on deltas allows the system to change state as acknowledgments arrive,

and to drop proposed changes that lose a race:

• Let {{ai,Vi,6i)}iei be the set of proposed changes in state s. Then:

- For any i € /, the set of proposed changes in state 8i(s) and the set of proposed

changes for 5 differ at most on elements whose arc is a;.

- For all i,j € I,i^ j, <$» and Sj commute, i.e., SioSj = SjoSi.

This condition is stronger than the one above, but in practice, there seems little loss in
generality. Further, because the S{ are simple data structures, it is easy to implement these
tests to check the correctness of concurrent changes.

5.3 Instantiation

At the most fundamental level, a new type of primitive activity description is added to
the system by implementing its instantiation function. This is a function of one argument,
the parameter for the primitive activity description. (If an activity description has several
conceptual argument, they are bundled into a single argument, for example, a tuple of
values.) The results of an instantiation function are:

• The initial private state of the node.

• The initial out-of-graph set for the node (explained below).

• A vector of strings, the node-relative names of arcs.

• A vector of values, giving the initial exposed value on each arc.

• A vector of taxi-functions (explained below).

The initial state of the node, the arc names, and the initial exposed values are all obvious
enough, modulo the issue of the representation that allows them to be maintained in persis-
tent form, which we do not discuss here. The interesting part is the out-of-graph set and the
tau functions, which is where the connection between the formalism and the implementation

must be made.

5.4 Out-of-graph Functions, Sets, and Messages

The private state and the out-of-graph set of a node together comprise what we called the
state of a node in the formalism. The reason for splitting the state in this way is motivated
by how out-of-graph state changes occur: they arise because of the arrival of out-of-graph
messages. The generic (i.e., node-type independent) machinery does not care about the
details of most of the state; this is the private state, i.e., private to the implementation of
the node. However, the generic machinery must be able to test the formal condition o(s) = 0
(part of the termination test) and it must know what to do when an out-of-graph message
arrives. The out-of-graph set solves both of these problems, as we shall see.

C-35

The Activity Coordination System

An out-of-graph set consists of key/oog-function pairs (with distinct elements having
distinct keys) and an out-of-graph message is a key/value pair. When an out-of-graph
message arrives at a node, the generic machinery looks up the key of the message in the
out-of-graph set. If it is not there, the message is ignored—the node is not vulnerable to
this kind of out-of-graph state change. If it is there, then the oog-function is called; it has
the following arguments and results:

• oog-function: private-state, oog-set, value —> delta-private-state, delta-oog-set

We can be quite precise about the relationship between an implemented oog-function / and
the function o of the formalism. First, let the private state and oog-set be p and q respectively;
the set s of the formalism is effectively (p, q). Let 6P, 8q be the result of f(p,q,v), so that

the new set is given by s' = (8p(p),8q(q)). (The pair (8p(p),8q(q)) serves as the 8 discussed
in section 5.2, and must observe those constraints.) The specification for / is that s' 6 o(s).
The non-determinism of the formalism, i.e., the fact that o(s) is a set, is replaced by the
choice of a specific state in the implementation, the choice aided by the value that arrived
in the message, an aspect of reality not under the purview of the formalism.

Thus, the out-of-graph set not only says what to do with an out-of-graph message, but
also provides the generic machinery with a way of testing whether o(s) = 0: if the out-
of-graph set is empty, all messages will be ignored, and no out-of-graph state change will
occur.

5.5 Tau Functions

A tau-function is the implementation specified by a r function of the formalism. It has the
following arguments and results:

• tau-function: private-state oog-set seen-value
—> exposed-value delta-private-state delta-oog-set

As we discussed in section 5.2, a tau-function only proposes an interaction, or more precisely,
the generic machinery initiates an interaction if and only if the "exposed value" result of a
tau-function differs from the currently exposed value.

Let / be a tau-function, let p, q be the components of the implemented state, and let v
be the seen value; let the results of f(p,q,v) be v',8p and 8q. The specification for / is:

• Let s' = (8pp,8qq). Then s' € T((p,q),v) and v' — cr(s')

Note that a in the formalism does not correspond to a separately implemented function, but
is instead bundled into the implementation of a tau-function.

A tau-function is called under two circumstances, both of which are subject to the condi-
tion that there is no pending interaction on the arc to which the tau-function is attached (so
that a new interaction will not be proposed if one is already pending). The first condition is
when the value seen at the other end of the arc changes and the second is when the private
state or out-of-graph set changes. (This can be caused by an oog-function or a successful
interaction on some arc.)

C-36

The Activity Coordination System

A The Universal Activity Description for a Protocol

We show that for any protocol p, there exist Sp, ap, rp, and op, which together with the
signature (n : p) comprise an activity description dp<n with the following property:

• For any activity description d with signature (n : p), there is a projection from d to dPi„.

Because of the generality of this result, in particular, the fact that p can be an arbitrary
predicate, the proof we give is non-constructive—it does not say how to implement dp<n. In
practice, this is usually not difficult, but even if it is, the result says to keep trying, because

the solution exists.
The almost right idea for an element of Sp is a sequence of pairs (fu vx),..., (fk, vk) for

which p holds and which ends with fk = 0. In this "state":

• VpiiifiiVi^Li) would be defined to be vk.

• Tp(((fi,Vi))f=1) would be defined to be the set of all sequences ((/,-, u;))-=i where:

- p holds for {f[, v[),..., (//, v[) and // = 0 (otherwise this would not be a legitimate

state).

- The new sequence is an extension of the original, i.e., / > k and /■ = /,• and
v[= Vi for i - 1,..., k. Thus, we may drop the primes from /• and v\.

- The new sequence does not skip any interactions at the node in question, i.e.,
/,- = 1 for i = k + 1,..., / - I. (If / = k + 1, this is a vacuous condition.)

- The new sequence is compatible with the value seen by r, i.e., : v = vio where
i0 = max{z < / | /; = 1}. (If /» = 0 for all i, this is vacuous.)

The motivation behind this definition was stated earlier: TP responds to a sequence of in-
teractions in a legal way, and it will respond to any legal sequence, i.e., is unpredictable up
to the constraints imposed by p. The only reason that it is not quite right is that a state
"remembers" too much: a sequence of states in an execution that we wish to project may
repeat, but states in the above definition of r always grow longer and thus never repeat.

Hence we cannot obtain a projection.
This flaw can be remedied by using as states, i.e., elements of <SP, not sequences of the

above form, but rather, quotient sets of sequences of the above form, under the following

equivalence relation:

• For j = 1 and 2, let U = {{fij,vlJ))f=v We will assume that p holds for t5 and that

fk.j = 0. We define ii ~ t2
c<=?

- vkl,i = Ufc,,2 (both "states" expose the same value).

- For any t0, p(ti~t0) M p{t2-t0) (where - means concatenation).

Intuitively, p can't tell the difference between U and t2.

C-37

The Activity Coordination System

If we look back at the would-be definitions of ap and rp, we see that they depend only upon
properties that are invariant under the above equivalence relation, and thus that ap and TP

may be defined in the same way for equivalence classes.
Let d have signature (n : p), and suppose that s £ Sd- We must define the element of Sp

to which s maps. In keeping with our non-constructive approach, look at all executions of d
that can arrive at s, and extract from each such sequence Sj a sequence of pairs ((fij,Vij))i,
describing traffic along the arc. Since the definition of execution requires that p holds for the
extracted sequence of pairs, and since the fact that Sj arrives at s implies that any two such
sequences are equivalent using the above definition, the set of all such sequences of pairs is
contained in an element of Sp, which is then the desired IT(.s).

This leaves only the matter of defining op. Since an application of Od does not appear in
an extracted sequence of pairs, if s' € g(s), then U(s') — H(s). Thus, out-of-graph changes
in d are not noticed in Sp, and:

• op(s) = 0

This completes the definition of dn v

C-38

The Activity Coordination System

B Bibliography

[Hoa84] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
London, England, 1984.

[Kar87] Michael Karr. Very long executions. Technical Report SOI-19-87, Software Options,

Inc., July 1987.

[Kar90] Michael Karr. Transaction graphs: A sketch formalism for activity coordination.
Technical Report RADC-TR-90-347, Rome Air Development Center, December

1990.

[Mor91] Robert T. Morris. Implementation of an activity coordination system. In Proceed-
ings of the 6th Annual Knowledge-Based Software Engineering Conference. Rome

Laboratory, September 1991.

[Pet] Advances in Petri Nets. Occasional volumes in Lecture Notes in Computer Science
(Springer-Verlag).

«U.S. GOVERNMENT PRINTING OFFICE: 1995-610-126-50117

C-39

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
2 6 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

